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Problem 1: The Hofstadter model and the magnetic Brillouin zone

Learning objective

The Hofstadter model is an exactly solvable model of non-interacting fermions hopping on a square

lattice in a magnetic field, originally introduced and studied by Douglas Hofstadtera. It can be seen as

a toy model for the integer quantum Hall effect as it features topological bands with non-zero Chern

numbers and a quantized Hall response. Here you study this model analytically and numerically.

aD. R. Hofstadter, “Energy levels and wave functions of Bloch electrons in rational and irrational magnetic

fields,” Physical Review B, vol. 14, no. 6, Art. no. 6, Sep. 1976, doi: 10.1103/physrevb.14.2239. [Hofstadter is a

quite unconventional scientist; to the public, he is best known for his Pulitzer Prize winning book “Gödel, Escher,

Bach: An Eternal Golden Braid,” an inspiring read on a wide span of topics such as (in)completeness in mathematics,

computability and the problem of (self-)consciousness.]

Consider a square lattice L of size Lx × Ly with periodic boundary conditions and lattice constant

a; the number of unit cells in i-direction is Ni = Li/a. We place a fermion mode c
(†)
s = c

(†)
m,n on

each vertex s = (m,n)a with coordinates m = 1, . . . , Nx and n = 1, . . . , Ny. Let x̂ = (a, 0) and
ŷ = (0, a) denote the lattice vectors in x- and y-direction.

In addition, we consider a two-component background gauge field Ai(x) ∈ R on x ∈ R2 with

i = x, y. The phase accumulated by a particle that is coupled to this gauge field and hops to an

adjacent site is then

θis :=
e

~

∫ s+î

s

A · dx for i = x, y . (1)

Geometrically, one should think of θxs = θxmn (θys = θymn) living on the horizontal (vertical) edges

between s = (m,n)a and s+ x̂ = (m+ 1, n)a [s+ ŷ = (m,n+ 1)a]:

Then the tight-binding Hamiltonian for charged, spinless fermions hopping on L is given by

H = −t
∑
s∈L

[
eiθ

x
sc†s+x̂cs + eiθ

y
sc†s+ŷcs

]
+ h.c. . (2)
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a) To build trust in Eq. (2), show that the accumulated phase eiγ of an electron that hops anti-

clockwise around a plaquette (see sketch above) is given by

γ = 2π
Ba2

h/e
= 2π

Φ

Φ0

= 2πΦ̂ with magnetic field B :=
∂Ay

∂x
− ∂Ax

∂y
. (3)

This describes exactly the Aharonov-Bohm phase that an electron picks up when moving around

the magnetic flux Φ = Ba2 (Φ0 = h/e = 2π~/e denotes the quantum of flux, Φ̂ is the magnetic

flux per plaquette in units of flux quanta).

In the following, we consider a constant magnetic field B and choose the Landau gauge:

Ax = 0 and Ay = Bx . (4)

b) Show that the Hamiltonian can now be written as

H = −t
∑
m,n

[
c†m+1,ncm,n + ei2πΦ̂mc†m,n+1cm,n

]
+ h.c. . (5)

Note that this Hamiltonian is in general not translational invariant in x-direction! This begs the

question how it can be diagonalized and whether a Brillouin zone can still be defined (which is

needed to compute Chern numbers and the Hall response).

c) To this end, define the generic translation operators

T̂x =
∑
m,n

eiχ
x
mn c†m+1,ncm,n and T̂y =

∑
m,n

eiχ
y
mn c†m,n+1cm,n (6)

where χx
mn and χy

mn are functions to be determined.

To construct a Brillouin zone, we would like these to be symmetries of the Hamiltonian:[
H, T̂j

]
!
= 0 for j = x, y . (7)

Show that the choice χx
mn = 2πΦ̂n and χy

mn = 0 solves this condition in the Landau gauge.

The operators T̂j with the property Eq. (7) are known as magnetic translation operators.

d) Show that the magnetic translation operators do in general not commute but rather

T̂xT̂y = e2πiΦ̂T̂yT̂x . (8)

This is known as the magnetic translation algebra.

e) To construct a Brillouin zone we need two independent conserved momenta (“good quantum

numbers”). The corresponding translation operators therefore must commute—and Eq. (8) is

a problem! To solve this, define the new translation operators T̂
nj

j for some integers nj ∈ N;
these describe translations by nj lattice vectors in direction j.

Show that whenvever Φ̂ = p/q is a rational number (where p and q are coprime), there are nx

and ny such that[
T̂ nx
x , T̂ ny

y

]
= 0 . (9)

The smallest integers nx, ny that solve this equation define the magnetic unit cell which restores

translational invariance of the Hamiltonian (but with more degrees of freedom per unit cell).
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For Φ̂ = p/q, we choose nx = q and ny = 1. Then we can invoke Bloch’s theorem to characterize

the eigenstates |k〉 = |kx, ky〉 of H as simultaneous eigenstates of H , T̂ q
x and T̂y with

H |k〉 = E(k) |k〉 , T̂ q
x |k〉 = eiqakx |k〉 , T̂y |k〉 = eiaky |k〉 (10)

where the momenta are periodic and define the magnetic Brillouin zone T 2 with

− π

qa
< kx ≤ π

qa
and − π

a
< ky ≤

π

a
. (11)

Note that this Brillouin zone is contracted by a factor of 1/q in kx-direction. In the following, we set

a = 1 to simplify the notation.

f) Show that every eigenenergy E = E(k) is (at least) q-fold degenerate.

(Hint: Use T̂x to construct q linearly independent states with the same energy.)

g) Finally, let us compute these eigenenergies. To this end, let the system be periodic in both

directions with extension Lx ∈ qN in x-direction and Ly ∈ N in y-direction. (Remember that

the magnetic unit cell comprises q of the original unit cells in x-direction and 1 in y-direction.)

To diagonalize the system, insert the single particle wavefunction

|Ψ〉 =
Lx∑

m=1

Ly∑
n=1

Ψm,nc
†
m,n |0〉 with Ψm,n ∈ C (12)

into the time-independent Schrödinger equation for Eq. (5) and derive a coupled system of linear

equations for the coefficients Ψm,n.

To solve this equation, use the discrete Fourier transform on the magnetic Brillouin zone

Ψ̃r(kx, ky) :=
∑
m,n

e−i(kx+2πΦ̂r)m−ikyn Ψm,n with kx ∈ [0, 2π/q), ky ∈ [0, 2π) (13)

and where the index r = 0, . . . , q − 1 takes into account the q sites within a single magnetic

unit cell.

Then the inverse Fourier transform reads (use Φ̂ = p/q with p and q coprime to check this!)

Ψm,n =
1

Lx

q−1∑
r=0

2π/q∑
kx=0

1

Ly

2π∑
ky=0

ei(kx+2πΦ̂r)m+ikyn Ψ̃r(kx, ky) . (14)

Show that with this transformation, the eigenvalue equation becomes a system of q coupled
linear equations,

−2t cos
(
kx + 2πΦ̂r

)
Ψ̃r(k)− t

[
eikyΨ̃r+1(k) + e−ikyΨ̃r−1(k)

]
= E(k)Ψ̃r(k) (15)

known as the Harper equation; it determines the spectrum of Eq. (2) for a homogeneous magnetic

field with Φ̂ = p/q flux per unit cell.

With the Harper equation, you can compute the spectrum of the theory as a function of the magnetic

flux Φ̂ = Φ/Φ0 per unit cell by solving the q-dimensional system of equations for discrete momenta

on the magnetic Brillouin zone (i.e., for a finite system of size Lx × Ly).
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h) Use your favourite programming language (C++, Python, Julia, Mathematica, Matlab, …) to
implement and solve the Harper equation Eq. (15) numerically for given flux Φ̂ = p/q (set t = 1).
Study the spectrum for Φ̂ = 1

2
, 1
3
, 2
3
, 1
4
, 1
5
, 2
5
in the limit of large systems (∆ki < 0.1) by plotting

the eigenenergies E(k) as functions of k = (kx, ky) over the magnetic Brillouin zone in a 3D

plot. The emerging bands, known as Hofstadter bands, are the lattice analogue of Landau levels.

i) Compute the spectrum as a function of magnetic flux for many (> 100) rational values in the

range 0 ≤ Φ̂ ≤ 1 (what happens for Φ̂ > 1?). Draw a black dot with coordinates (Φ̂, E) for
every eigenvalue E. The resulting picture is a fractal known as the Hofstadter Butterfly. Try to

identify the bands that you plotted in h) in the Butterfly.

With the magnetic Brillouin zone at hand (for rational magnetic flux per unit cell), you are now

prepared to compute the Chern numbers Cr for each of the q bands. However, since this exercise is
already long enough (and the evaluation of Cr is far from trivial), we only state the result. If you are

interested in the details, have a look at the original paper by TKNN1 or (better and) the textbook by

Eduardo Fradkin2; a very detailed account is also provided in the textbook by Andrei Bernevig3.

To compute the Chern number of the rth band, one has to find integer solutions (sr, tr) ∈ Z2 to the

linear Diophantine equation

r = qsr + ptr . (16)

Since p and q are coprime (their greatest common divisor is 1), a unique solution with |tr| ≤ q/2 is
guaranteed to exist (this is a well-known result in number theory). It can then be shown that

Cr = tr − tr−1 with t0 := 0 . (17)

Using the TKNN formula derived in the lecture for a Fermi energy EF that lies in the gap between

bands r and r+1, the quantized Hall conductivity of the Hofstadter model is then simply (telescoping

series!)

σxy =
e2

2π~
tr (18)

where r is the index of the last filled band. Note that the solutions tr ∈ Z for r = 1, 2, 3, . . . are
typically quite erratic, positive and negative integers (if you are in doubt, check this for a few

fractions p/q).

1D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional

Periodic Potential,” Physical Review Letters, vol. 49, no. 6, pp. 405–408, 1982, doi: 10.1103/physrevlett.49.405.
2Fradkin, Eduardo. Field Theories of Condensed Matter Systems. Addison-Wesley Publishing Company, 1991.

[Section 9.8, pp. 287–292]
3B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors. Princeton University

Press, 2013. [Section 5.4, pp. 51–59]
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