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Problem 1: Edge modes from Dirac Hamiltonians

Learning objective

In the lecture we argued that both the Chern insulator and the Z2 topological insulator feature gapless

edge modes on boundaries of the system. The phenomenon that a topologically non-trivial bulk entails

gapless modes on the surface is known as bulk-boundary correspondence. Here you will show that the

emergence of these gapless, edge-localized modes already follows from the low-energy description in

terms of Dirac Hamiltonians.

Consider an infinite 2D system that is effectively described by a Dirac

Hamiltonian with a y-dependent mass term that varies continuously

and is negative (positive) in the left (right) half-plane. It therefore must

vanish on the x-axis which becomes the boundary that separates the
two gapped systems A and B.→

In real space, the Dirac Hamiltonian of this system reads

HD = −i∇ · ~σ +m(y)σz =

(
m(y) −i∂x − ∂y

−i∂x + ∂y −m(y)

)
(1)

with ~σ = (σx, σy)T ; the functional dependence ofm(y) is given in the
sketch on the right.

Consequently, the Chern number of the two materials A and B must differ by ±1 because of the
sign change of the Dirac mass at the boundary; remember that

C = −sign[m(y)]

2
(2)

for a Dirac Hamiltonian. You can think of material B as a trivial insulator with C = 0 and of material
A as a Chern insulator with C = 1; both insulators share an interface at y = 0.

a) Use the Hadamard transform HD 7→ UHDU
† with

U =
1√
2

(
1 1
1 −1

)
(3)

to solve the time-independent Schrödinger equation

HDΨ(x, y) = EΨ(x, y) (4)

with the two-component spinor Ψ(x, y).

(Hint: Make a product ansatz to separate the PDEs after the transformation with U and set

the separation constants to zero. Use the behaviour ofm(y) sketched above to select a unique,
non-diverging solution. )

Page 1 of 6



TOPOLOGICAL PHASES OF MATTER Problem Set 5

b) What is the spectrum E(kx) of the solution and what is its group velocity along the boundary?
Where is the solution localized in y-direction?

Problem 2: The sewing matrix expression for the Pfaffian invariant

Learning objective

In the lecture we introduced the Pfaffian invariant as the parity of the vorticity of the Pfaffian in an

effective Brillouin zone. This topological Z2 index characterizes the topological phase of the Kane-Mele

model. Here you derive an equivalent expression for the Pfaffian invariant in terms of the sewing matrix.

This expression is pivotal for the construction of topological insulators in three dimensions.

Let {|ei(k)〉}i=1...2n be a globally continuous basis of the valence bundle, i.e., the subspace of filled

Bloch statesHfilled
k over the Brillouin zone T 2. In the lecture, we defined the Pfaffian index as

I =
1

2πi

∮
∂EBZ

∇ logP (k) · dk mod 2 =
1

2πi

∮
∂EBZ

d logP (k) mod 2 (5)

with ∂EBZ the boundary of a suitably chosen effective Brillouin zone that does not intersect with

the vortices of P (k). The latter is given as Pfaffian

P (k) = Pf [M(k)] (6)

of the skew-symmetric matrix

Mij(k) = 〈ei(k)| T̃U |ej(k)〉 . (7)

T̃U denotes the time-reversal operator with T̃ 2
U = −1 and in the following, I is the set of TRIMs.

a) Let the sewing matrix be defined as

wij(k) = 〈ei(−k)| T̃U |ej(k)〉 (8)

and prove the following properties:

i. w(k)w†(k) = 1 (→ unitarity everywhere on T 2)

ii. wT (k) = −w(−k) (→ skew-symmetry at TRIMs)

iii. w(K) = M(K) forK ∈ I
iv. M(−k) = w(k) ·M∗(k) · wT (k)

v. detw(k) = P (k)/[P (−k)]∗

b) Show that det[w(k)] = det[w(−k)] and use this to prove that

1

2πi

∮
C
d log[detw(k)] = 0 (9)

for every closed path C on the Brillouin zone T 2; i.e., detw(k) does not have any vorticity.

(Hint: Note that the non-contractible loops around the torus T 2 allow for phase windings even in

the absence of vortices. To show that even for such loops the above integral vanishes, use that

every loop can be continuously deformend into a time-reversal invariant loop, i.e., a loop that is

mapped onto itself under k 7→ −k.)
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c) For a closed path C that does not cross zeros of P (k), define L[C] :=
∮
C d logP (k) so that

I = L[∂EBZ]/(2πi) mod 2. Show that

(−1)I = exp

{
L[C1,2]− L[C3,4]

2

}
(10)

where Ci,j are the two disjoint boundary components of the EBZ (each of which passes through

two TRIMs i and j). Each of these paths can be split into two connected components C±
i,j that

are mapped onto each other under time-reversal:

Show that we can decompose the terms in (10) as

L[Ci,j] = 2L[C+
i,j] +

(
L[C−

i,j]− L[C+
i,j]

)
. (11)

d) To evaluate Eq. (11), show first that

expL[C+
i,j] =

Pf [w(Kj)]

Pf [w(Ki)]
, (12)

e) and then

L[C+
i,j]− L[C−

i,j] =

∫
C+
i,j

d [logP (k)− logP ∗(−k)] . (13)

(Hint: Use that |P (K)| = 1 at TRIMsK ∈ I and |P (k)| = |P (−k)| from subtask a).)

f) Use the previous result to derive

exp

{
L[C+

i,j]− L[C−
i,j]

2

}
=

√
detw(Kj)√
detw(Ki)

. (14)

(Hint: Results from Subtask a) might be helpful.)

g) Combine your results to prove the final expression

(−1)I =
∏
K∈I

Pf [w(K)]√
detw(K)

. (15)
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This expression allows for the computation of the Pfaffian invariant I based only on the values of
the sewing matrix at the TRIMs. Eq. (15) is important because it can be used to generalize the Z2

invariant to three dimensions and leads naturally to the concept of weak topological insulators1.

(Hint: For the validity of Eq. (15) you need the continuity of
√
detw(k) on T 2 (why?). Give a

reason why such a choice for the square root is possible. Furthermore, the identity (Pf [A])2 =
det[A] may be useful.)

Problem 3: Edge modes of the Kane-Mele model (Numerics)

Learning objective

A characteristic feature of phases with topologically non-trivial bands is the emergence of gapless edge

modes on boundaries of the system (see also Problem 1). These modes make the system conducting on

the boundaries whereas the bulk is a gapped insulator. Because it is well-known that one doesn’t really

understand what one cannot program, here you study the edge modes of the Kane-Mele topological

insulator numerically.

The many-body Hamiltonian of the Kane-Mele model (without Rashba coupling) reads

ĤKM =
∑
〈i,j〉,α

c†iαcjα +m
∑
i,α

εic
†
iαciα + λSO

∑
〈〈i,j〉〉,α,β

iηji c
†
iαµ

z
αβcjβ (16)

where i, j run over sites on the honeycomb lattice, α ∈ {↑, ↓} is the spin in the z-basis and 〈i, j〉
and 〈〈i, j〉〉 denote nearest neighbour and next-nearest neighbour pairs, respectively. εi is ±1 on the
two sublattices of the honeycomb lattice and ηji = ±1 is chosen positive for an electron that makes
a right-turn when hopping from j to i. µi (i = x, y, z) are Pauli matrices that act on the spin degree
of freedom.

Here we consider the Hamiltonian on a finite strip with Lx/y unit cells in x/y-direction, periodic
boundary conditions in y- and open boundary conditions in x-direction:

Note that this choice of boundary conditions leads to “zig-zag” type edges.

1L. Fu, C. L. Kane, and E. J. Mele, Topological Insulators in Three Dimensions, PRL 98, 106803 (2007),

https://doi.org/10.1103/PhysRevLett.98.106803
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a) Since the strip is only periodic in y-direction, we consider the system as a 1D chain in y-direction
with very large (2× 2× Lx) unit cell.

Fourier transform Eq. (16) in y-direction and show that it takes the form

ĤKM =
∑
ky∈BZ

Ψ†
ky
H(ky)Ψky (17)

with 4Lx-component spinor

Ψky =
(
c̃A1,ky,↑ c̃B1,ky,↑ . . . c̃ALx,ky,↑ c̃BLx,ky,↑ c̃A1,ky,↓ c̃B1,ky,↓ . . . c̃ALx,ky,↓ c̃BLx,ky,↓

)T
.

Here, c̃βx,ky,α denotes the fermion mode at x-position x = 1 . . . Lx with y-momentum ky and spin

α ∈ {↑, ↓} on sublattice site β ∈ {A,B}.
(Hint: The generic site index i in the modes ciα in Eq. (16) must be carefully translated into a
triple i = (x, y, β) with x = 1 . . . Lx and y = 1 . . . Ly and β ∈ {A,B} taking into account the
connectivity of the honeycomb lattice (i.e., ciα = cβx,y,α), see the sketch above; then a discrete

Fourier transform in y yields the modes c̃βx,ky,α.)

The Bloch Hamiltonian in Eq. (17) is a 4Lx × 4Lx-matrix

H(ky) =

(
H↑(ky) 0

0 H↓(ky)

)
(18)

with Hα(ky) =


Gα(ky) D†

α(ky) 0 0 . . .

Dα(ky) Gα(ky) D†
α(ky) 0

. . .

0 Dα(ky) Gα(ky) D†
α(ky)

. . .
...

. . .
. . .

. . .
. . .

 (19)

and depends on the y-momentum 0 ≤ ky < 2π. It can be interpreted as single particle Hamilto-
nian of a 1D chain of length Lx with two sublattice sites and spinful fermions.

The blocks take the form

Gα(ky) =

(
m− 2λα

SO sin(ky) 1 + e−iky

1 + eiky −m+ 2λα
SO sin(ky)

)
(20)

and Dα(ky) =

(
iλα

SO(1− eiky) 1
0 −iλα

SO(1− eiky)

)
(21)

where we define λ↑
SO = +λSO and λ

↓
SO = −λSO.

Use your favourite programming language (C++, Python, Julia, Mathematica, Matlab, …) to
construct and diagonalize the matrix H(ky) as a function of ky for given parameters Lx,m and λSO
(henceforth we assume Ly → ∞ and choose ky ∈ [0, 2π) continuously). You should have access to
both eigenvalues and the corresponding eigenvectors.

(Hint: It is useful to diagonalize the two spin sectors Hα(ky) separately and plot their spectra with
different colors in the same plots to distinguish and compare the spin-polarized bands.)
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b) Let us start with graphene. Set Lx = 50 andm = 0 = λSO and plot the full spectrum of H(ky)
over the Brillouin zone ky ∈ [0, 2π). You should see (projections of) the two Dirac cones that
make graphene a semimental. Note that the tips of the cones are connected by two flat bands;

this is a peculiar feature of zig-zag edges as already mentioned in the first paper by Kane &

Mele2.

c) Now add a small (m ≈ 0.2) staggered potential m. Both Dirac cones should obtain a gap.

However, there are no gapless ege modes since the spin-polarized bands have no Chern number

(as we already know from the Haldane model).

d) Switch off the staggered potential and open a gap using the Kane-Mele spin-orbit coupling

instead (λSO ≈ 0.03). In contrast to the previous subtask, the spectrum now features four

crossing gapless bands (do you see four?); these are helical edge states (as you will verify below)

and make the strip conducting on the edges. Compare your result to Kane &Mele’s plot (Figure 1)

in [2].

e) Now start to add in addition the staggered potential and observe how the two spin-manifolds

separate (use λSO = 0.06 to compare with the original paper). In the topological phase you

should see four separate gapless bands crossing at four distinct points. Plot the spectrum in

the topological phase (m = 0.1), at the critical point (m = 3
√
3λSO), and in the trivial phase

(m = 0.4) by ramping upm. Compare your spectra to Kane & Mele’s result (Figure 1) in their

follow-up paper3; in particular, focus on the region where the gapless bands connect to the bulk.

Can you explain the differences?

f) We focus now on the four crossings of the edge bands. Consider a system in the topological

phase close to the phase transition (m = 0.25, λSO = 0.06) and compare the spectrum for a wide

(Lx = 50) and a narrow strip (Lx = 10). Which edge modes gap out for small systems, which do

not? Can you explain why?

g) Finally we should identify the states of the gapless bands as edge states. To do so, select four

eigenvectors of H(ky) in the topological phase (two for each H↑/↓(ky)) on the four bands that
cross zero energy (= Fermi energy) with eigenenergies close to zero (this determines ky).

The eigenstates ofH↑/↓(ky) have 2Lx components enumerating the sublattice sites in x-direction
(i.e., across the strip). Plot the modulus of their amplitudes as a function of the x-position. Use
this to correlate (1) where the states on the four crossing bands are located in x-direction, (2)
their spin polarization, and (3) their group velocity in y-direction.

It is their exponential localization on the edges of the strip combined with their gapless nature

that marks them as gapless edge modes/states. Physically, the strip has conducting channels

(where group velocity and spin-polarization are locked) on its boundary while being a gapped

insulator in the bulk.

To demonstrate that the edge states are special you can plot a few states picked from the gapped

bulk spectrum for comparison (e.g., the states with highest energy in the spectrum for some ky).

2C. L. Kane and E. J. Mele,Quantum Spin Hall Effect in Graphene, PRL 95, 226801 (2005),

https://doi.org/10.1103/PhysRevLett.95.226801
3C. L. Kane and E. J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, PRL 95, 146802 (2005),

https://doi.org/10.1103/PhysRevLett.95.146802
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