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Problem 1: Edge modes of the Su-Schrieffer-Heeger chain

Learning objective

In the lecture we claimed (and numerically demonstrated) that the ground space degeneracy of the open-

boundary SSH chain is induced by exponentially localized edge modes which are present everywhere in

the topological phase—even in the presence of sublattice-symmetric disorder. Here you substantiate this

claim analytically.

The many-body Hamiltonian of the SSH chain reads for open boundary conditions

ĤSSH = t
L∑
i=1

(a†ibi + b†iai) + w
L−1∑
i=1

(b†iai+1 + a†i+1bi) , (1)

with real and homogeneous hopping strengths t > 0 and w > 0; a
(†)
i and b

(†)
i are fermionic creation-

and annihilation operators.

a) Show that the operators

ãl = N
L∑
i=1

(−x)i−1 ai and b̃r = N
L∑
i=1

(−x)i−1 bL−i+1 (2)

with x = t/w describe two fermionic modes and determine the normalizing factor N .

b) Prove that the ground space of ĤSSH is four-fold degenerate in the thermodyamic limit if the

system is in the topological phase (x < 1) by showing that[
ãl, ĤSSH

]
= O

(
xL

)
and

[
b̃r, ĤSSH

]
= O

(
xL

)
, (3)

and demonstrate that the energy splitting of the edge modes vanishes exponentially with the

system size.

Your final goal is to demonstrate that these results are robust to disorder that breaks translational

invariance, particle-hole and time-reversal symmetry (but not sublattice symmetry!). To this end,

consider the generalized SSH chain Hamiltonian from the lecture

Ĥ ′
SSH =

L∑
i=1

(ti a
†
ibi + t∗i b

†
iai) +

L−1∑
i=1

(wi a
†
i+1bi + w∗

i b
†
iai+1) , (4)

with site-dependent couplings ti, wi ∈ C.
We define the local ratio xi = ti/wi (i = 1, . . . , L− 1) and assume that the moduli |xi| are i.i.d. (=
independent and identically distributed) random variables with probability density function P (x)
for x ∈ [0,∞).
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c) For a given realization of couplings {xi}, we generalize the edge mode operators as follows:

ãl = N
L∑
i=1

Xi ai and b̃r = N
L∑
i=1

X∗
i bL−i+1 (5)

with Xi :=
∏

j<i(−xj) and X1 := 1. Verify that all algebraic statements from subtask a) remain

valid, i.e., these constitute two fermion modes.

d) Focus only on the left edge mode ãl and show that[
ãl, Ĥ

′
SSH

]
= NXLtL bL . (6)

Derive a condition on P (x) such that

XL ∈ O(e−λL) which means |XL| < e−λ(L−1) for L → ∞ (7)

with some λ > 0.

(Hint: Strictly speaking, the limit L → ∞ is to be taken in a stochastic sense: Use the (strong)

law of large numbers to convert XL into an integral over P (x) in the limit L → ∞ (this limit is

a so called “almost surely” convergence).)

e) For the sake of concreteness, assume that the moduli |xi| ∈ U(δ, x̃) are uniformly distributed

random variables in the interval [δ, x̃]; 0 < δ � 1 is a regularization of no physical importance.
The upper cutoff x̃ > δ is the parameter of the model.

Use your result in d) to show that for x̃ < 1 the ground space of Ĥ ′
SSH is four-fold degenerate in

the thermodynamic limit—despite the disorder in the hoppings.

Problem 2: The Zak phase

Learning objective

In the lecture we have shown that the two quantum phases of the SSH chain can be characterized by the

winding number of the Bloch vector around the origin in the dx-dy-plane. Here you show that the two

quantum phases can also be distinguished by the Berry phase collected over the Brillouin zone. This

phase is known as the Zak phasea and has already been measured in experimentsb.

aJ. Zak, Berry’s phase for energy bands in solids, PRL 62, 2747 (1989)
bM. Atala et al., Direct measurement of the Zak phase in topological Bloch bands, Nature Physics 9, 795 (2013)

The Bloch Hamiltonian of the SSH chain is given by

H(k) = ~d(k) · ~σ with ~d(k) =

t+ w cos k
w sin k

0

 (8)

for k ∈ [0, 2π) and t, w > 0.

a) Diagonalize the Bloch Hamiltonian and compute the eigenstates |u±(k)〉.
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b) Compute the integral of the Berry phase over the Brillouin zone

ϕZak =

∫ 2π

0

i 〈u±(k)|∂ku±(k)〉 dk (9)

and show that ϕZak = π mod 2π in the topological phase (t < w) and ϕZak = 0 mod 2π in the

trivial phase (t > w).

c) Let
∣∣u′

±(k)
〉
:= eiϕk |u±(k)〉 be a continuous gauge transformation and compute the effect on

the Zak phase ϕZak.

Problem 3: The Bogoliubov-de Gennes Hamiltonian and particle-hole “symmetry”

Learning objective

For the topological classification of the Majorana chain we used the “intrinsic” particle-hole symmetry of

the Bogoliubov-de Gennes Hamiltonian. In the lecture, it was claimed that this is not a real symmetry (in

the sense that some operator commutes with the Hamiltonian) but rather a tautological constraint on the

BdG Hamiltonian that arises from the algebra of fermion operators. Here you show this claim in detail.

We are interested in a generic quadratic fermion Hamiltonian

Ĥ =
L∑

i,j=1

Hij c
†
icj +

1

2

(
∆ij c

†
ic

†
j +∆∗

ij cjci

)
(10)

with mean-field pairing terms parametrized by ∆ij ∈ C and hopping Hamiltonian Hij ∈ C.

a) Show that H† = H and w.l.o.g. ∆T = −∆.

b) Introduce the Nambu spinor

Ψ =
(
c1 . . . cL c

†
1 . . . c†L

)T

(11)

and show that the Hamiltonian can be written in the form

Ĥ =
1

2
Ψ† HBdGΨ+ const. (12)

with Bogoliubov-de Gennes Hamiltonian

HBdG =

(
H ∆

−∆∗ −H∗

)
. (13)

c) Show thatHBdG features a particle-hole “symmetry” as required for the tenfold way classification.

Note that this reality constraint on HBdG does not impose any constraints on Ĥ but follows

simply from the algebraic properties of the fermion operators; it is, in this sense, “intrinsic” or

“tautological”.
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Problem 4: From the Majorana chain to the transverse-field Ising model

Learning objective

The transverse-field Ising model is a one-dimensional spin-12 model of interacting spins with a quantum

phase transition that exemplifies the notion of spontaneous symmetry breaking. By contrast, the Majorna

chain is a quadratic fermion model that can be solved exactly and features a topological phase transition

without symmetry breaking. Remarkably, there is a mathematically exact mapping between fermionic

and spin-12 systems known as Jordan-Wigner transformation that relates these two models. The point

of this task is then (1) to solve the transverse-field Ising model exactly by mapping it to the Majorana

chain and (2) to understand how the topological phase transition of the Majorana chain translates to the

spontaneous symmetry breaking phase transition of the transverse-field Ising model.

In the lecture we introduced the mean-field Hamiltonian of a one-dimensional p-wave superconduc-
tor,

ĤMC = −µ

2

L∑
i=1

(iγ2i−1γ2i) + w
L−1∑
i=1

(iγ2iγ2i+1) (OBC) (14)

commonly referred to asMajorana chain; here,w = ∆ is the hopping amplitude/superconducting gap

parameter and µ the chemical potential; the γn are 2LMajorana operators. Because the Hamiltonian

is quadratic in fermion operators, we had not trouble computing the spectrum in the Bogoliubov-de

Gennes representation.

The goal is to show that the model can be mapped exactly onto the transvere-field Ising model (TIM)

(with open boundary conditions), given by the spin-1
2
Hamiltonian

HTIM = −J
L−1∑
i=1

σx
i σ

x
i+1 + h

L∑
i=1

σz
i (OBC) (15)

which we introduced in the first lecture of this course as an example of spontaneous symmetry

breaking; here, J > 0 is the ferromagnetic coupling and h ∈ R the transverse field.

a) Consider the Hilbert spaceHSpin = (C2)⊗L of a spin-1
2
system with L spins and Pauli matrices

σα
i for α = x, y, z and i = 1, . . . , L. Show that the operators

γ2i−1 :=

[∏
j<i

σz
j

]
σx
i and γ2i :=

[∏
j<i

σz
j

]
σy
i (16)

satisfy the algebraic relations of Majorana fermions and therefore establish a Fock space repre-

sentationHFock ' HSpin via ci =
1
2
(γ2i−1 + iγ2i).

This transformation is known as Jordan-Wigner transformation. Note that the transformation

Eq. (16) is highly non-local; the non-local product of σz-operators is sometimes referred to as

Jordan-Wigner string which can be troublesome for the simulation of fermionic systems on

quantum computers (because qubits = spin-1
2
).

b) Apply the Jordan-Wigner transformation to the Majorana chain Eq. (14) with open boundary

conditions and show that it results in the transverse-field Ising model Eq. (15). How do the

parameters of the two models relate? Conclude from this where the gap of the transverse-field

Ising model closes and the symmetry-breaking phase transition occurs.
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c) Demonstrate how the ground state(s) of the Majorana chain at the fixed points (trivial: w = 0
and µ > 0; topological: w > 0 and µ = 0) map to ground state(s) of the transverse-field Ising
model.

What happens to the long-range correlations lim|i−j|→∞〈σx
i σ

x
j 〉 of the transverse-field Ising

model in the symmetry-broken phase under Jordan-Wigner transformation?

What is the fermionic counterpart of the global spin-flip symmetry

Z =
∏
i

σz
i with [Z,HTIM] = 0 (17)

of the transverse-field Ising model?
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