1. Internal Energy (Written)

Given are two systems Σ_1 and Σ_2, see figure 1 with the equations of state

\[\Sigma_1 : U_1 = \frac{3}{2} n_1 RT_1 \]
\[\Sigma_2 : U_2 = \frac{5}{2} n_2 RT_2 , \]

which are in diathermic contact. Here n is the number of moles, R is the gas constant with $R = 8.314 \text{ J/K} \cdot \text{mol}$.

(a) The total energy of the combined system shall be U. Determine the internal energies U_1 and U_2 for Σ_1 and Σ_2, respectively, for thermal equilibrium. As an example, insert the values $n_1 = 2 \text{ mol}$, $n_2 = 3 \text{ mol}$ and $U = 24000 \text{ J}$.

(b) Instead of the total energy, now the initial temperatures T_1 and T_2 of Σ_1 and Σ_2, respectively, are given. Determine U_1, U_2 and T for thermal equilibrium, with $T_1 = 250 \text{ K}$, $T_2 = 300 \text{ K}$, $n_1 = 2 \text{ mol}$ and $n_2 = 3 \text{ mol}$.

2. Ideal Gas, Part 1 (Written)

(a) Show, for the case of an ideal gas, that the relation

\[\frac{\partial^2 U}{\partial S \partial V} = \frac{\partial^2 U}{\partial V \partial S} , \]

holds.

(b) From the lecture we know the following relations

\[dU = \delta Q - \delta W , \]
\[\delta Q = C_V dT , \]
\[\delta W = p dV . \]

Hence

\[\frac{\partial U}{\partial V} \bigg|_T = -p . \]

This is obviously wrong for the ideal gas, where $U = U(T)$, i.e. U is independent of V. Where is the mistake?
3. Ideal Gas, Part 2 (Oral)

(a) The ideal gas law is \(PV = nRT \), where \(n \) again is the number of moles of gas and \(R \) the gas constant. A process equation is a simple function of, usually, two variables of \(P, V, T \), which remains constant throughout the process. Find isobaric, isothermic and isochoric process equations.

(b) Apply the ideal gas law to get the adiabatic process equation \(PV^\gamma = \text{const.} \), where \(\gamma = C_P/C_V \).

(c) What is the meaning of a reversible process? Explain how to perform an adiabatic process in an irreversible procedure.

(d) Consider the free expansion of a gas, figure 2. This is also an adiabatic expansion, but of irreversible nature. Why?

(e) During a free expansion, \(\delta Q, dU \) and \(\delta W \) are zero, respectively, but still the entropy increases. Find the expression for the increasing entropy.

\[\text{Figure 2: Upper part: Two chambers, separated by a valve with initial pressure } P_i \text{ and initial volume } V_i. \text{ Lower part: System after opening the valve with final pressure } P_f \text{ and final volume } V_f. \]

4. Equation of State for magnetic Substances (Oral)

A homogeneous magnetic field \(H \) is created by a long coil. Then, an isotropic, magnetic material shall be placed in the center of the coil. The reversible work performed by the coil onto the material is given by

\[\delta A = H \, dM, \]

at unity volume. Here \(M \) is the magnetization of the material. Since we are dealing with an isotropic material, the vector nature of \(H \) and \(M \) can be neglected.

(a) Write down the entropy of the system as \(S = S(T, H) \) and derive with this the relationship between the magnetization \(M = M(T, H) \) (thermic equation of state) and the internal energy \(U = U(T, H) \) (caloric equation of state).

(b) A paramagnetic substance fulfills the Curie-law

\[M = K \cdot \frac{H}{T}, \]

with \(K \) being a material dependent constant. Show that \(U \) only depends on \(T \).