Theoretische Physik IV: Statistische Mechanik, Exercise 3

Prof. Dr. Hans Peter Büchler WS 2013/14, 29. October 2013

1. Carnot Cycle with ideal Gas (Written)

Show, that the efficiency of a Carnot machine is

$$\eta_{\text{id. gas}} = 1 - \frac{T_2^{\text{gas}}}{T_1^{\text{gas}}},$$

when an ideal gas is used as medium.

For this, calculate the work and heat for each step of the cycle.

2. Otto Cycle (Oral)

Convert the given sketch/figure (1) into a T - S diagram. Calculate the efficiency

$$\eta_{\text{Otto}} := \frac{\text{performed work}}{\text{delivered heat}},$$

of this machine, for an ideal gas as medium with $c_{\rm V}={\rm const}$. In addition show

$$\eta_{\text{Otto}} < \eta_{\text{Carnot}} = 1 - \frac{T_{\text{min}}}{T_{\text{max}}}.$$

<u>Hint</u>

The equation for the difference in entropy from S_0 to S is

$$S - S_0 = \int_{T_0}^{T} c_V \frac{dT}{T} + \int_{V_0}^{V} R \frac{dV}{V}.$$

For an adiabatic process, the equation relating T and V is

$$TV^{R/c_V} = T_0 V_0^{R/c_V} .$$

3. Water Carnot Cycle (Oral)

Here we consider water as a medium in a Carnot cycle. The coefficient of expansion is given by

$$\alpha = \frac{1}{V} \left. \frac{\partial V}{\partial T} \right|_{p},$$

and has the following properties, depending on the temperature of water T_w ,

- if $T_w > 4$ °C, then $\alpha > 0$,
- if $T_w = 4^{\circ} \text{C}$, then $\alpha = 0$,
- if $T_w < 4$ °C, then $\alpha < 0$.

Figure 1: p - V diagram for the Otto cycle.

(a) Consider two water isotherms at 6°C and 2°C. How must the volume change, such that heat is always supplied?

Hint

The isothermic compressibility $\kappa_T = -V^{-1} (\partial V/\partial p)_T$ is always positive, because applying more pressure to a liquid does not make it larger. The Helmholtz free energy is given by dF = -S dT - p dV, use the fact of its exactness to derive a relation between S and p.

(b) Why is it not possible to build a Carnot cycle with the isotherms at the two temperatures given in (a)?

Hint

Consider the process in the T - V diagram and calculate the slope $(\partial T/\partial V)_S$ of both adiabates. The heat capacity at constant volume is given through $c_V = (\partial U/\partial T)_V$.

4. Magnetic Carnot Machine (Oral)

Consider a paramagnetic material as in exercise sheet 2, problem 4, which has a constant heat capacity $c_M = (\partial U/\partial T)_M$. The material shall be used as a Carnot machine between two heat reservoirs of temperatures $T_2 > T_1$.

- (a) Find the equation of the adiabates of the system and sketch a cycle for the machine in a *T M* diagram. In which direction has the cycle to run, in order to perform work?
- (b) Calculate the work performed by the machine in one cycle.
- (c) Compute the efficiency of the machine.