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1. Phase diagrams (Oral)

The aim of this exercise is a better understanding of phase diagrams and their con-
struction by means of empiric facts. In the following the phase diagram is identified
with the two-dimensional manifold of equilibrium states given by p = p(V, T ).

(a) Ordinary liquids: Employ the following facts to derive the qualitative phase
diagram p = p(V, T ) of an ordinary liquid (that is, a liquid without an anomaly
as it characterizes e.g. water):

• There are three phases: solid, liquid and gaseous. At very low and very
high temperatures the solid and gaseous phases coexist. For intermediate
temperatures there is an additional liquid phase separating the solid and
gaseous phases.

• Thermodynamic stability demands
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at all points in thermodynamic equilibrium.

• The solid phase is denser than the liquid phase.

• The slope of the lines of phase coexistence in the T -p-diagram is positive.
All three lines of coexistence emanate from the triple point. The line of
coexistence that separates gaseous and liquid phase terminates at a critical
point; the line that separates solid and gaseous phase terminates at the
origin p = 0 = T . The line of coexistence that separates the solid and
liquid phase emanates from the triple point and does not terminate.

Sketch p = p(V, T ) in a V -T -p-diagram. Deduce the two-dimensional projec-
tions of the phase diagram on the T -p-, V -T -, and V -p-plains. Highlight the
lines of phase coexistence in all diagrams and, in addition, the isotherms in the
V -p-diagram.

(b) Water: Employ the previous facts to derive the qualitative phase diagram
p = p(V, T ) of an anomalous liquid, that is, water. The anomaly results in the
following modifications of the last two statements above:

• The solid phase is less dense than the liquid phase.

• The slope of the line separating solid and liquid phases is negative in the
T -p-diagram.

Sketch the same diagrams as in (a).



Figure 1: Meissner effect: The B-field can-
not penetrate the superconductor for T <
Tc and H < Hc(T ).

2. Meissner effect (Oral)

The magnetic field B cannot penetrate the bulk of a Type-I superconductor (ac-
tually, the magnetic field is exponentially suppressed on length scales given by the
London penetration depth λ — we can savely ingnore this subtlety in the following).
This is known as the Meissner effect. In this field-free state it holds

B = H + 4πm = 0 (2)

where B denotes the magnetic flux density, H the magnetic field strength, and
m = M/V the magnetization (dipole moment per volume; M is the extensive mag-
netization, that is, total dipole moment). Is the temperature too high, T > Tc, or
the magnetic field too strong, H > Hc, a phase transition from superconductivity to
a normal conducting phase occurs. The critical magnetic field strength Hc = Hc(T )
depends on the temperature and is approximately given by

Hc(T ) = Hc(0)
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for T ≤ Tc . (3)

(a) Sketch the phase diagram in the T -H-plane.

(b) Use the Clausius-Clapeyron relation to derive the latent heat for this phase
transition. To this end neglect the magnetization Mn of the normal conducting
phase and consider only the magnetization Ms of the superconducting phase.
What is the order of the considered phase transition?
Hint: Recall that dU = TdS+HdM and make the substitutions −p→ H and
V →M in the Clausius-Clapeyron relation as derived in the script.

(c) Why is it reasonable to describe the superconductor by its Gibbs free energy
G(T,H)? Calculate the change ∆G(T ) := Gs(T,H = 0)−Gn(T,H = 0) of this
quantity when the system traverses the phase boundary from a superconducting
(s) to a normal conducting (n) phase. What is the physical meaning of ∆G(T )?
Hint: Use the continuity condition Gs(T,Hc(T )) = Gn(T,Hc(T )).

(d) Derive the change of entropy ∆S(T ) := Ss(T,H = 0)−Sn(T,H = 0) for T ≤ Tc
via the results in (c). Give a physical interpretation of both the sign of ∆S(T )
and the value of ∆S(T = Tc). Calculate the change ∆C(Tc) := Cs(Tc)−Cn(Tc)
of the specific heat at the critical temperature Tc.
Hint: The specific heat is defined as C := T ∂S
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Figure 2: Van der Waals gas: A piston of
mass m stabilized by a van der Waals gas.

3. Van der Waals gas (Written)

Here we revisit the phase transition of the van der Waals gas and consider its
thermodynamic stability. In the lecture the equation of state for the van der Waals
gas was introduced as
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with molar volume v = V/n and the (molar) parameters a and b.

(a) Calculate the isothermal compressibility
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for the critical molar volume vc = 3b as a function of T . Describe the behaviour
of κT for T → Tc + 0 with the critical temperature Tc = 8a/(27bR).

(b) Using these results, discuss the thermodynamic stability of the van der Waals
gas for T < Tc and T ≥ Tc.

(c) Consider the setup shown in Fig. 2: A vertical cylinder is filled with a van
der Waals gas which stabilizes a piston of mass m. Assume the temperature is
fixed at T < Tc. What happens if the mass m = m(t) is slowly increased as a
function of time? (Let m(t = 0) be very small.)

(d) Calculate the (molar) free energy f(T, v) for fixed temperature T as a function
of v and discuss the qualitative differences for T > Tc and T < Tc, respectively.
Sketch the (molar) Gibbs free energy g(T, p) for fixed T as a function of p for
T > Tc and T < Tc.
Hint: The Gibbs free energy is defined as Legendre transform of f(T, v), i.e.

g(T, p) := infv[f(T, v) + pv] = infv[f(T, v)− (−pv)] = − supv[−pv − f(T, v)] .

Sketch this function by hand or use a CAS to derive a qualitative result.


