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1. Skating (Oral)

The popular sport of skating relies on the low friction between the blades of skates
and the ice. According to a widespread belief this low friction is due to a thin film
of liquid water separating blade and ice. This liquid film may be the result of the
high pressure exerted by the blades.
Assume that the temperature of the ice is T = −5 ◦C, the slope of the phase
boundary that separates ice and water is

∂pfs
∂T

= −138 at/deg (Why the sign?), and
the skater’s weight is M = 69 kg. Is the explanation given above reasonable?

Remark: For further information on this issue see
www.nytimes.com/2006/02/21/science/21ice.html?pagewanted=all.

2. Gibbs paradox (Oral)

Entropy is one of the most subtle concepts in physics and responsible for a great
deal of confusion. In this exercise we examine the concept of entropy — especially
the entropy of an ideal gas — in more detail to gain a deeper understanding of
some oddities that arise when gases are allowed to mix; this is usually referred to
as ”Gibbs paradox”. We start with some preliminaries:

(a) Read and understand p. 77-79 in the script by G. Blatter. Show that the
entropy of mixing for two boxes (V1, N1 and V2, N2; both temperature T and
pressure p) of different ideal gases reads

∆S = Smixture − (S1 + S2) = kB

[
N1 ln

V

V1
+N2 ln

V

V2

]
where V = V1 + V2 .

(b) Employ the second law of thermodynamics to argue that ∆S = 0 if the ideal
gases in box 1 and 2 are identical.
Hint: Contrive a gedankenexperiment which allows a decrease in entropy.

(c) Consider the mixing of two ideal gases (as above) which differ only in the
colour C of their particles. Let C = 0 denote black and C = 1 white particles
(and 0 < C < 1 the intermediate grey tones). Sketch the (physically expected)
entropy of mixing ∆S as a function of C for 0 ≤ C ≤ 1.

This strange behaviour in combination with the expression for ∆S in (a) is usually
referred to as Gibbs paradox. To scrutinise it, let us try to understand why ∆S > 0

http://www.nytimes.com/2006/02/21/science/21ice.html?pagewanted=all


in (a) from a mathematical point of view. In the lecture was shown that the entropy
for an ideal gas is given by

S(T, V ) = NkB

[
ln

(
T

T0

)3/2

+ ln

(
V

V0

)]
(1)

with temperature T , (fixed) particle number N and volume V . A homogeneous
function f of order k over n variables x1, . . . , xn is characterized by

f(λx1, . . . , λxn) = λkf(x1, . . . , xn) for all λ ∈ R . (2)

A quantity is called extensive if it is homogeneous of order k = 1 in its extensive
variables.

(d) Consider V and N as extensive variables. Show that S as given in Eq. (1) is
not extensive. This calculation is formally ill-defined. Why?
Hint: It is no coincidence that in Eq. (1) (and in the script) S = S(T, V ) is not
a function of N .

(e) We can make S extensive if we take into account the N -dependence (which
formally is hidden in the integration constants T0 and V0). Show this by a
careful derivation of S = S(T, V,N).
Hint: Calculate S(T1, V1, N) − S(T2, V2, N) and show that the most general
entropy function reads

S(T, V,N) = NkB

[
ln

(
T

T0

)3/2

+ ln

(
V

V0

)]
+ kBf(N) (3)

where f is an arbitrary function of N .

(f) Obviously the extensivity of S depends on f . Demand S(T, V,N) to be exten-
sive in V and N . Show that this leads to the functional equation

f(λN) = λf(N)− λN lnλ . (4)

Solve it (Hint: Set N = 1 and f(1) ≡ lnN0 with N0 an arbitrary constant) and
show that the now extensive entropy S̃(T, V,N) is given by

S̃(T, V,N) = NkB

[
ln

(
T

T0

)3/2

+ ln

(
V N0

NV0

)]
. (5)

(g) Derive the entropy of mixing ∆S̃ for this entropy and show that it vanishes for
a ”mixture” of identical gases. When is it legitimate to use Eq. (1) and when
is it necessary to use the extensive version Eq. (5)? Can you reproduce the
result for ∆S in (a) with the extensive entropy in Eq. (5)?

Remark: The extensive entropy S̃ can be (and will be) derived in the framework of
statistical mechanics quite naturally if one takes into account the indistinguishability
of particles properly.



3. Permafrost (Written)

In the lecture the source-free heat equation was derived; it reads

(∂t −D∆)T = 0 (6)

with temperature T = T (~x, t) and thermal diffusivity D > 0. Here we employ
Eq. (6) to model the heat flow below the earth’s surface. To this end, identify the
earth with a (one-dimensional) half space x ≥ 0 where x = 0 corresponds to the
surface. The temperature is then a function T = T (x, t) depending on depth x and
time t. Assume that the surface temperature is oscillatory

T |S = T (x = 0, t) = T0 cosωt (7)

due to daily or annual temperature variations.

(a) Solve Eq. (6) with the boundary condition in Eq. (7). The solution is am-
biguous. Introduce another (reasonable) boundary condition to get rid of this
ambiguity.
Hint: How did you solve the time evolution of a free particle wave function
Ψ(x, t) in quantum mechanics? How does Eq. (6) relate to the free particle
Schrödinger equation?

(b) The penetration depth for surface variations of the temperature is defined as
λ ≡

√
2D/ω. What is the ratio of λa/λd for annual and daily temperature vari-

ations? Assume the typical thermal diffusivity D = 0.006 cm2s−1 and calculate
λa and λd. Give an explanation for the phenomenon of permafrost.


