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1. Stirling’s formula (Oral)

Here you derive the famous and (at least in statistical physics) ubiquitous approxi-
mation

n! ∼
(n
e

)n√
2πn for n ∈ N, n→∞ (1)

which is commonly referred to as Stirling’s formula. To do this, consider the repre-
sentation

n! = Γ(n+ 1) =

∞∫
0

xne−x dx =

∞∫
0

exp (n lnx− x) dx (2)

in terms of the Γ-function. Expand the logarithm n lnx−x of the integrand around
its sharp maximum for n� 1 and evaluate the resulting Gaussian integral.

2. Fermionic and bosonic distribution functions (Oral)

In this exercise we re-derive the H-theorem for particles that obey bosonic and
fermionic statistics to end up with the corresponding distribution functions. In the
lecture was shown that for classical particles the one-particle density f satisfies the
Boltzmann equation

∂tf + q̇ · ∇qf + ṗ · ∇pf = ∂tf |S (3)

where ∂tf |S describes the change of f due to scattering of the particles. For particle-
particle scattering the expression

∂tf |S = −
∫

d3p′ d3p1 d3p′1wp′,p′1;p,p1
X(p,p1,p

′,p′1) (4)

was motivated, where X(p,p1,p
′,p′1) = f(p)f(p1) − f(p′)f(p′1). Now we consider

indistinguishable quantum particles — they are defined by their statistics, that is,
their behaviour upon interchange of identical particles. In the ansatz of molecular
chaos the statistics can be incorporated via

X±(p,p1,p
′,p′1) = f±(p)f±(p1)

[
1± f±(p′)

] [
1± f±(p′1)

]
−

f±(p′)f±(p′1)
[
1± f±(p)

] [
1± f±(p1)

]
(5)

where X+ (X−) describes bosons (fermions). Thermodynamic equilibrium demands
∂tf
±
0 |S = 0 where f+

0 (f−0 ) is called Bose-Einstein statistics (Fermi-Dirac statistics).



(a) Derive the H-theorem for both bosonic and fermionic statistics. To do this,
consider the generalized H-functional

H±[f ](t) :=

∫
d3p [f ln f ∓ (1± f) ln(1± f)] where f = f(p, t) . (6)

That is, show that ∂tH
±|S ≤ 0 by using the symmetries of wp′,p′1;p,p1

and the
definition of X±(p,p1,p

′,p′1).

(b) Argue that ∂tH
±[f±0 ]|S = 0 implies ln

(
f±0

1±f±0

)
= µ

kBT
− ε(p)

kBT
for µ ∈ R, vanishing

total momentum p0 = 0 and energy ε(p) = p2/2m.
Hint: You are allowed to choose the occurring constants to match the required
form above. You are not asked to show that µ and T can be interpreted as
chemical potential and temperature, respectively.

(c) Derive the Bose-Einstein and Fermi-Dirac statistics f±0 (p).

3. Simulation of one-dimensional gas (Written)

In this exercise we illustrate the emergence of macroscopic thermodynamic proper-
ties by simulating the microscopic dynamics of a many-body system. To master this
task, you may use the high level programming language or CAS of your choice. The
sample solution as well as the technical hints below refer to Mathematica. Please
note that there are Mathematica installations available on the physics CIP-pool
computers.

Consider a one-dimensional system with N particles at positions qi ∈ R and (con-
jugate) momenta pi ∈ R, i = 1, . . . , N . Two particles interact via the (smooth) van
der Waals potential VVdW. The gas is trapped in the global potential VT. Then the
Hamiltonian reads

H =
∑
i

p2i
2m

+
∑
i

VT(qi) +
∑
i>j

VVdW(qi, qj) (7)

where
∑

i>j denotes the sum over all pairs (i, j) and m is the particles’ mass. The
van der Waals potential is defined as

VVdW(qi, qj) :=
λ

1 + ρ(qi − qj)6
(8)

with the fixed parameters λ, ρ ∈ R+
0 . The trapping potential can be chosen harmonic

(n = 2) or anharmonic (n = 4):

VT(qi) := γ (qi)
n , n = 2, 4 (9)

with γ ∈ R+
0 .

(a) Derive the equations of motion for both trapping potentials (n = 2, 4). What
does |VVdW(qi, qj)| < ∞ for all qi, qj ∈ R tell you about the behaviour of the
particles?



(b) Derive the time evolution of the center of mass Q := 1
N

∑
i qi for the harmonic

(n = 2) trap analytically. Can you do the same for the anharmonic (n = 4)
trap?

(c) For the sake of simplicity set m = 1, γ = 1/n, λ = 1/6, and ρ = 100. Write
a program that integrates the equations of motion for 0 ≤ t ≤ 100 = tmax

and N particles (n = 2, 4). As initial conditions choose uniformly distributed
positions qi(t = 0) ∈ [qmin, qmax] and momenta pi(t = 0) ∈ [pmin, pmax].

(i) Plot for N = 100, [qmin = 1.9, qmax = 2.1] and [pmin = −0.01, pmax = 0.01]
the center of mass motion Q(t). Do this for both, the harmonic and the
anharmonic trap. Compare the result for n = 2 with the analytic one.

(ii) Plot for the anharmonic trap, N = 100 and the same initial conditions as

above the average kinetic energy Ekin(t) := 1
N

∑
i
p2i (t)

2m
. How long does it

take to equilibrate?

(iii) Let te be the equilibration time. Approximate the mean of an observable
X(t) via

X ≈ 1

tmax − te

∫ tmax

te

X(t) dt (10)

and compute the standard deviation σE :=
√

Var[Ekin] =

√(
Ekin − Ekin

)2
.

Do this for different particle numbersN ≤ 100 and plot
√
NσE(N)

(
Ekin

)−1
as a function of N . In addition, measure the time required for the solution
of the equations of motion for the different particle numbers N . What do

you observe? How does your result for
√
NσE(N)

(
Ekin

)−1
motivate the

macroscopic description of thermodynamics? Based on your time measure-
ments for N ≤ 100, give an estimate how long an analogous computation
for one mole (N = 6 · 1023) of this gas would take.

Please hand in your derivations as well as the plots and your conclusions. If you
encounter any technical problems feel free to ask your tutor. Here are some notes
regarding Mathematica:

• Detailed information on all Mathematica functions can be found online:
http://reference.wolfram.com/mathematica/guide/Mathematica.html

• In Mathematica the evaluation of an expression is initiated via Shift+Enter.

• You can define vectors of functions qi(t) or pi(t) with variable length NN via

qvec=Table [ Subscript [ q , i ] [ t ] ,{ i ,NN} ] ;
pvec=Table [ Subscript [ p , i ] [ t ] ,{ i ,NN} ] ;

• Random initial conditions can be defined via

inq=Table [ Subscript [ q , i ] [0 ]==Random[Real , InitRangeQ ] ,{ i ,NN} ] ;
inp=Table [ Subscript [ p , i ] [0 ]==Random[Real , InitRangeP ] ,{ i ,NN} ] ;

where InitRangeQ={qmin,qmax} and InitRangeP={pmin,pmax} define the ini-
tial ranges for qi and pi.

• You can define the differential equations via

http://reference.wolfram.com/mathematica/guide/Mathematica.html


sysq=Table [D[ Subscript [ q , i ] [ t ] , t]==<EOM> ,{ i ,NN} ] ;
sysp=Table [D[ Subscript [ p , i ] [ t ] , t]==<EOM> ,{ i ,NN} ] ;

where D denotes the derivative with respect to t and for <EOM> the right-hand
side of the equations of motion is to be substituted.

• You can solve the equations of motion numerically via

s o l=NDSolve [ Join [ sysq , sysp , inq , inp ] ,
Join [ qvec , pvec ] ,{ t , 0 , tmax} ,MaxSteps−>10ˆ6];

where the solutions are stored in sol.

• You can plot e.g. the center of mass position via

Plot [Sum[ Subscript [ q , i ] [ t ] /NN,{ i ,NN} ] / . so l ,{ t , 0 , tmax } ]

• You can measure the time for evaluating an expression <expression> via

AbsoluteTiming[< expre s s i on >]


