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1. 1D classical Ising Model: Part 1 (Written)

Consider a chain of N classical, binary magnetic moments si ∈ {−1,+1}. The
physics is defined by the 1D Ising Hamiltonian

H1D({sj}) = −J
N−1∑
i=1

sisi+1 (1)

with coupling constant J ∈ R. In the following we consider open boundary condi-
tions (OBC), i.e. the term sN+1s1 is missing.

(a) Explain pictorially why for J > 0 (J < 0) the system is called ferromagnetic
(antiferromagnetic).

(b) Calculate the canonical partition function

ZN(T ) =
∑
{sj}

e−βH1D({sj}) (2)

with inverse temperature β ≡ 1
kBT

. Here
∑
{sj} denotes the sum over all

configurations {sj}.
Derive an expression for the free energy per site in the thermodynamic limit,
f(T ) = − limN→∞

1
βN

lnZN(T ).

(c) Calculate the two-point correlation function

〈sisi+k〉 = ZN(T )−1
∑
{sj}

sisi+k e
−βH1D({sj}) (3)

for i = 1, . . . , N and k ≤ N − i and conclude that there is no phase transition
for T > 0. Hint: Show that 〈sisi+k〉 → 0 for k,N → ∞ and fixed i. That is,
there is no long-range order for finite T in the thermodynamic limit.
What happens for T = 0?

2. 1D classical Ising Model: Part 2 (Oral)

Let us go one step further and switch on a magnetic field h which contributes the
energy −hsi for each magnetic moment si. Therefore the new Hamiltonian reads

H1D({sj}) = −J
N∑
i=1

sisi+1 − h
N∑
i=1

si (4)

where we now impose periodic boundary conditions (PBC), i.e. the term sN+1s1 is
present and we identify sN+1 ≡ s1.



(a) Again calculate the canonical partition function ZN(T, h). To this end, show
that the partition function can be cast in the form

ZN(T, h) = Tr
[
TN
]

(5)

where T ∈ R2×2 is a symmetric 2× 2-matrix and Tr[•] denotes the trace (T is
called transfer matrix ).

Recall that for any diagonalisable matrix M ∈ Rn×n with eigenvalues λ1, . . . , λn
it holds 1) MN has eigenvalues λNi and 2) Tr[M ] =

∑N
i=1 λi. Thereby derive

an expression for ZN(T, h).

(b) Show that the free energy per site in the thermodynamic limit reads

f(T, h) = − 1

β
ln

[
eβJ cosh βh+

√
e2βJ sinh2 βh+ e−2βJ

]
. (6)

(c) Derive an expression for the magnetization m(T, h) and the susceptibility
χ(T, h = 0). To this end, show that the ensemble average of the magnetic
moment per spin can be calculated (in the thermodynamic limit) as

m ≡ lim
N→∞

1

N

〈∑
i

si

〉
= lim

N→∞

1

N

∂(lnZN)

∂(βh)
(7)

and use the free energy f(T, h) to evaluate this expression. Is there now a
phase transition, meaning a finite magnetization for vanishing magnetic field
h and finite T? Explain the behaviour of χ(T, h = 0) for T → 0.

(d) Compare the results in (c) with the corresponding results of problem 4 on
exercise sheet 11 for the non-interacting magnetic moments.

Remark: In contrast to the one-dimensional Ising chain which we considered here,
there is a phase transition at a finite temperature Tc > 0 in two dimensions. The
analytical solution due to Onsager is considered a milestone of theoretical physics.

3. Repetition of Quantum Mechanics: Density operators (Oral)

This exercise sets up some crucial concepts of quantum statistical mechanics. Some
(if not all) of them should already be known from your quantum mechanics lecture.

To describe the state of a quantum mechanical system as a vector |Ψ〉 ∈ H in
some Hilbert space H, it is essential for the state to be known completely (e.g. by
measuring a CSCO, a complete set of commuting observables).

In real setups this is usually not possible which motivates a more general notion of
quantum mechanical ”states”. Such a generalized state is described by the statement
that the considered system is with classical probability pi in some state |Ψi〉 for
i = 1, . . . , n (where {|Ψi〉} is a not neccessarily orthogonal set of states). We expect
that measuring an observable Â yields the expectation value

〈Â〉 =
n∑
i=1

pi 〈Ψi|Â|Ψi〉 (8)

where 〈Ψi|Ψi〉 = 1, 0 ≤ pi ≤ 1 and
∑

i pi = 1.



The state of the system is now described by the density operator

ρ̂ =
n∑
i=1

pi |Ψi〉〈Ψi| (9)

(often sloppily called density matrix ).

A density operator ρ̂ is called pure if there is a state vector |Ψ〉 ∈ H such that
ρ̂ = |Ψ〉〈Ψ| and mixed otherwise. A mixed state ρ̂ therefore encodes a classical
mixture of quantum states (in contrast to a coherent superposition).

(a) Explain why ρ̂ indeed encodes our knowledge of the system completely by
showing that the expectation value of an observable Â can be expressed as
〈Â〉 = Tr[ρ̂Â] = Tr[Âρ̂] where Tr[•] denotes the trace of an operator.

(b) Prove the following characterizing properties of any density operator:

(i) ρ̂ = ρ̂† (self-adjoint)

(ii) 〈φ| ρ̂ |φ〉 ≥ 0 for all |φ〉 ∈ H (positive semi-definite)

(iii) Tr[ρ̂] = 1 (normalized trace-class)

Mathematically speaking, a density operator is a (bounded) positive semi-
definite and Hermitian trace-class operator with trace one.

In the common perception of quantum mechanics it is perfectly valid to (coherently)
superimpose two states |Ψ1〉 , |Ψ2〉 ∈ H to obtain a new physical quantum state
|Ψ′〉 = α |Ψ1〉 + β |Ψ2〉 (up to a normalizing factor). The state space H (i.e. the
Hilbert space) therefore exhibits a vector space structure.

(c) Let B(H) be the vector space of bounded operators on H (”matrices”) and
denote by D(H) ⊆ B(H) the set of density operators (characterized by the
properties in (b)).

Give an example to show that D(H) is not a vector space. That is, density
operators cannot be linearly combined in general to form a new valid density
operator. Yet D(H) features an interesting property: Show that D(H) is a
convex space, i. e. show that for two density operators ρ̂1, ρ̂2 ∈ D(H) it follows

t · ρ̂1 + (1− t) · ρ̂2 ∈ D(H) for 0 ≤ t ≤ 1 . (10)

This is called a convex combination of density operators.

To conclude this short review of density operators, let us focus on the following two
important statements:

(d) Show that for any Hermitian operator Ĥ and β ∈ R+
0 the operator ρ̂ :=

e−βĤ/Tr[e−βĤ ] is a density operator.
Hint: Recall that a Hermitian matrix is positive semi-definite if and only if all
eigenvalues are non-negative.

(e) The quantity γ[ρ̂] := Tr[ρ̂2] is called purity. Show that γ[ρ̂] = 1 if ρ̂ is pure and
γ[ρ̂] < 1 if ρ̂ is mixed. We conclude that γ can be employed to check whether
a given state is a pure quantum state or a classical mixture of quantum states.


