
Theoretische Physik IV: Statistische Mechanik, Exercise 13
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1. Quantum Ising model with transverse field: Part 1 (Oral)

We consider a system of Ising-coupled (quantum) spins on a lattice where each spin
has z nearest neighbors (z is known as the coordination number of the lattice). A
magnetic field of strength Ω is applied perpendicular to the preferential direction of
the spins. The Hamiltonian is given by

H = −J
∑
〈i,j〉

σ̂zi σ̂
z
j + Ω

∑
i

σ̂xi (1)

where σ̂αi are the spin-1/2 Pauli matrices and 〈i, j〉 describes the sum over nearest
neighbors. We consider a ferromagnetic coupling J > 0.

In this exercise we are exploring the physics of this model within a mean-field
analysis. We define the mean-field m ≡ 〈σ̂z〉 as the average magnetization in z-
direction.

(a) We can always write the spin operators as σ̂zi = m + δ̂zi where δ̂z contains the
residual operator character and describes the deviation from the mean-field.

Transform the Hamiltonian into a sum of uncoupled spins by assuming that
the deviations from the mean-field are small, such that we can neglect terms
of second order in δ̂z. Substitute all occurences of δ̂z with σ̂z−m after making
the approximation.

(b) Diagonalize the resulting single-spin Hamiltonian. Let |1〉 and |$〉 be the eigen-
states.

(c) Compute the probability p1(T ) to be in the state |1〉 at temperature T . Then,
we can express the magnetization as

m = 〈σ̂z〉 = p1(T ) 〈1| σ̂z|1〉+ p$(T ) 〈$| σ̂z|$〉 (2)

= (2p1(T )− 1) 〈1| σ̂z|1〉 .

Compute the right hand side of this equation (as a function ofm). The resulting
equation is called a self-consistency equation.

(d) Derive the phase diagram as a function of ω = Ω/J and t = kBT/J . To this
end, derive an analytic expression for the critical temperature tc as a function
of ω.
Hint: While the self-consistency equation can not be solved analytically, you
can get the idea of how to derive the phase boundary by inspecting the solutions
graphically.



2. Quantum Ising model with transverse field: Part 2 (Written)

We consider the model from the first part at zero temperature. Intuitively, for
vanishing field Ω/J −→ 0, the system favors a configuration where all spins point
in either positive or negative z-direction. On the other hand, for Ω/J −→ ∞, the
external field aligns all spins in x-direction.

Ignoring correlations between the spins, we can use these observations to devise a
variational wave function for the system

|Ψα〉 =
N∏
i=1

|$α〉i =
N∏
i=1

Ry(α) |↓〉i . (3)

Here, Ry(α) describes a rotation around the y-axis in spin-space. An explicit rep-
resentation is given by

Ry(α) = e−i
α
2
σy = 1 cos

(α
2

)
− iσy sin

(α
2

)
. (4)

(a) Calculate the energy per spin of the variational state E(α) = 〈Ψα|H |Ψα〉 /N .

(b) Show that the variational ansatz yields the true ground state in the limits
described above.

(c) Visualize the change in the energy landscape E(α) as Ω/J crosses the critical
value for the phase transition.

3. Absence of Bose-Einstein condensation in 2D (Oral)

Determine the grand-canonical partition function Z(z, V, T ) for the ideal Bose gas.
By z ≡ eβµ we denote the fugacity. Use the partition function to calculate the mean
density n = n(z, T ) = 〈N〉/V of the gas for d = 2, 3 dimensions.

Show that the ideal Bose gas does not condense in two dimensions at any T > 0.

Remark 1: A powerful generalization of this result is known as Mermin-Wagner
theorem. It states that a continous symmetry cannot be spontaneously broken at
finite temperature in d ≤ 2 dimensions. A Bose-Einstein condensate has a broken
U(1) symmetry due to the overall phase of the wave function — and is therefore
forbidden in d ≤ 2 dimensions.

Remark 2: The above result is only valid for a uniform system. A two dimensional
Bose gas which is harmonically trapped condenses at a finite critical temperature.


