Prof. Dr. Hans Peter Büchler WS 2013/14, 21. Januar 2014

1. Quantum Ising model with transverse field: Part 1 (Oral)

We consider a system of Ising-coupled (quantum) spins on a lattice where each spin has z nearest neighbors (z is known as the coordination number of the lattice). A magnetic field of strength Ω is applied perpendicular to the preferential direction of the spins. The Hamiltonian is given by

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_i^z \hat{\sigma}_j^z + \Omega \sum_i \hat{\sigma}_i^x \tag{1}$$

where $\hat{\sigma}_i^{\alpha}$ are the spin-1/2 Pauli matrices and $\langle i, j \rangle$ describes the sum over nearest neighbors. We consider a ferromagnetic coupling J > 0.

In this exercise we are exploring the physics of this model within a mean-field analysis. We define the mean-field $m \equiv \langle \hat{\sigma}^z \rangle$ as the average magnetization in z-direction.

- (a) We can always write the spin operators as $\hat{\sigma}_i^z = m + \hat{\delta}_i^z$ where $\hat{\delta}^z$ contains the residual operator character and describes the deviation from the mean-field. Transform the Hamiltonian into a sum of uncoupled spins by assuming that the deviations from the mean-field are small, such that we can neglect terms of second order in $\hat{\delta}^z$. Substitute all occurences of $\hat{\delta}^z$ with $\hat{\sigma}^z m$ after making the approximation.
- (b) Diagonalize the resulting single-spin Hamiltonian. Let $|\rangle$ and $|\rangle$ be the eigenstates.
- (c) Compute the probability $p_{\uparrow}(T)$ to be in the state $|\uparrow\rangle$ at temperature T. Then, we can express the magnetization as

$$m = \langle \hat{\sigma}^{z} \rangle = p_{\uparrow}(T) \ \langle \uparrow | \hat{\sigma}^{z} | \uparrow \rangle + p_{\downarrow}(T) \ \langle \downarrow | \hat{\sigma}^{z} | \downarrow \rangle$$

$$= (2p_{\uparrow}(T) - 1) \ \langle \uparrow | \hat{\sigma}^{z} | \uparrow \rangle .$$
(2)

Compute the right hand side of this equation (as a function of m). The resulting equation is called a *self-consistency equation*.

(d) Derive the phase diagram as a function of $\omega = \Omega/J$ and $t = k_B T/J$. To this end, derive an analytic expression for the critical temperature t_c as a function of ω .

<u>Hint:</u> While the self-consistency equation can not be solved analytically, you can get the idea of how to derive the phase boundary by inspecting the solutions graphically.

2. Quantum Ising model with transverse field: Part 2 (Written)

We consider the model from the first part at zero temperature. Intuitively, for vanishing field $\Omega/J \longrightarrow 0$, the system favors a configuration where all spins point in either positive or negative z-direction. On the other hand, for $\Omega/J \longrightarrow \infty$, the external field aligns all spins in x-direction.

Ignoring correlations between the spins, we can use these observations to devise a variational wave function for the system

$$|\Psi_{\alpha}\rangle = \prod_{i=1}^{N} |\swarrow_{\alpha}\rangle_{i} = \prod_{i=1}^{N} R_{y}(\alpha) |\downarrow\rangle_{i}.$$
(3)

Here, $R_y(\alpha)$ describes a rotation around the y-axis in spin-space. An explicit representation is given by

$$R_y(\alpha) = e^{-i\frac{\alpha}{2}\sigma_y} = \mathbb{1}\cos\left(\frac{\alpha}{2}\right) - i\sigma_y \sin\left(\frac{\alpha}{2}\right).$$
(4)

- (a) Calculate the energy per spin of the variational state $E(\alpha) = \langle \Psi_{\alpha} | \mathcal{H} | \Psi_{\alpha} \rangle / N$.
- (b) Show that the variational ansatz yields the true ground state in the limits described above.
- (c) Visualize the change in the energy landscape $E(\alpha)$ as Ω/J crosses the critical value for the phase transition.

3. Absence of Bose-Einstein condensation in 2D (Oral)

Determine the grand-canonical partition function $\mathcal{Z}(z, V, T)$ for the ideal Bose gas. By $z \equiv e^{\beta\mu}$ we denote the *fugacity*. Use the partition function to calculate the mean density $n = n(z, T) = \langle N \rangle / V$ of the gas for d = 2, 3 dimensions.

Show that the ideal Bose gas does not condense in two dimensions at any T > 0.

<u>Remark 1:</u> A powerful generalization of this result is known as Mermin-Wagner theorem. It states that a continous symmetry cannot be spontaneously broken at finite temperature in $d \leq 2$ dimensions. A Bose-Einstein condensate has a broken U(1) symmetry due to the overall phase of the wave function — and is therefore forbidden in $d \leq 2$ dimensions.

<u>Remark 2</u>: The above result is only valid for a uniform system. A two dimensional Bose gas which is harmonically trapped condenses at a finite critical temperature.