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1. Black body radiation (Oral)

The goal of this exercise is to derive Planck’s law of black body radiation. We
consider a gas of photons at thermal equilibrium. For simplicity, we consider a
box of volume V = L3 and periodic boundary conditions. Due to the boundary
conditions, there are discrete energy levels (modes). Each mode is labeled by a
set of quantum numbers k = 2π

L
z with z = (zx, zy, zz) ∈ Z3 and a polarization

σ ∈ {±1}. The energy of the mode (k, σ) is given by Ek,σ = ~ωk = ~c|k| = ~ck.

(a) Each mode can be occupied by nk,σ = 0, 1, 2, . . . photons. Determine the
partition function Zk,σ(β, V ) of a single mode and the total partition function
Z(β, V ).

(b) In the following, we assume that the modes are ‘dense’ such that we can go
over to a continuum description. In k-space there are exactly two modes (po-
larization) per ‘volume’ (2π)3/V . Show that there are N(k)dk ≡ V

π2k
2dk states

in a spherical shell of radius k and thickness dk. The quantity N(k) is called
the density of states in k-space. Use the relation D(k)dk = D(ω)dω to trans-
form to the (frequency) density of states D(ω), i.e. the number of states in the
frequency interval [ω, ω + dω].

(c) Show that we can use the density of states to write a sum
∑

k,σ f(k) in the

continuum limit as
∫

dωD(ω)f(ω).

(d) Write the energy density u ≡ U/V = −(∂β lnZ)/V in the form u =
∫

dω u(ω).
The expression for the spectral energy density u(ω) is known as Planck’s law.

(e) Find the Stefan-Boltzmann law u = σT 4 by integrating the spectral energy
density over the frequency. Determine the value of σ.



Remark: The following exercises are intended as a repetition and preparation for
the exam.

2. Rubber band (Oral)

In its relaxed state, a rubber band is of length L0 over a temperature range [Ti, Tf ].
The force F needed to expand the band to length L > L0 has been experimentally
determined to be

F = bT

(
L

L0

− L2
0

L2

)
, b > 0. (1)

Furthermore, the heat capacity at constant length cL ≡ T (∂S/∂T )L is independent
of the temperature for L = L0 within the given temperature range, i.e. cL(T, L0) =
cL(T0, L0).

(a) Determine the internal energy and the entropy of the rubber band as a function
of T and L close to the point (T0, L0) with T0 ∈ [Ti, Tf ]. To this end, derive
the relation dU = cLdT and show that cL(T, L) = cL(T0, L0).

(b) Determine the amount of work needed to expand the rubber band isothermally
in a reversible way (slowly) from length L0 to L1 > L0 at temperature T = T0.
What is the entropy change of the rubber band during this process?

(c) Starting from state (T0, L1) the rubber band is now released without contact
to the heat bath (and without extracting any energy from the system). Which
temperature does the band have in the relaxed state? What is the entropy
change? Is this process reversible?

3. Thermodynamic relations (Oral)

We consider a material whose internal energy is independent of the volume, that is
(∂U/∂V )T = 0. Prove the following statements:

(a) The specific heat at constant volume cV is a function of T only.

(b) The volume V is a function of P/T only.

(c) The difference between the specific heat at constant pressure and at constant
volume cP − cV is a function of P/T only.

4. Collection of harmonic oscillators (Oral)

We consider a system of N uncoupled classical harmonic oscillators. Each oscillator
is described by a Hamiltonian H(p, q) = p2/2m+mω2q2/2.

(a) Calculate the canonical partition function ZN(T ).

(b) Determine the free energy, the internal energy and the specific heat cV .


