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Problem 1: Scalar- and vector operators (Oral)

Learning objective

Rotations in space are described on the Hilbert space by angular momentum operators. Some operators
on the Hilbert space transform like scalars or vectors under rotations. Knowledge about these so called
scalar- and vector operators is extremely useful to decide whether a given Hamiltonian is rotationally
invariant and to evaluate commutators without cumbersome calculations. Here you derive some important
properties to identify scalar- and vector operators.

Consider rotations in three dimensions about an axis ω̂ = ω/ω with angle ω. The angular momentum
operator L = r∧p is the infinitesimal generator of rotations and Uω = exp (−iω L · ω̂/~) represents
the rotations on the Hilbert space of wave functions, i.e., |Ψω〉 = Uω |Ψ〉 describes the wave function
of the rotated system.

By definition, a scalar operator S is invariant under rotations,

U †
ω S Uω = S , (1)

and a vector operator V = (Vx, Vy, Vz)
T transforms like

U †
ω VUω = RωV , (2)

where Rω denotes the usual rotation matrix for vectors in three dimensions.

a) Show that for a scalar operator S it is [L, S] = 0 (shorthand for [Lα, S] = 0 for α = x, y, z).

b) Show that for a vector operator V it is [Li, Vj] = i~εijkVk.
Hint: Use the representation (Rω)ij = [1 − cos(ω)]ω̂iω̂j + cos(ω) δij − sin(ω) εijkω̂k for the
rotation matrix and linearize (2) for small ω.

c) Use that r and p are vector operators to show that L is also a vector operator.
Hint: Consider the components of U †

ω r∧pUω and show that U †
ω r∧pUω = U †

ω rUω ∧U †
ω pUω .

d) Use that r and p are vector operators to show that [L,p · r] = 0 first by explicitely calculating
the commutator, and second by showing that p · r is a scalar operator.
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Problem 2: Spin rotations (Written)

Learning objective

Here you derive a useful formula for spin-12 rotations.The application to states yields an explicit expression
for their transformation under rotations and reveals a peculiarity of spin (in contrast to orbital angular
momentum).

a) Show that the spin-1
2
representation of rotations about the axis ω̂ = ω/ω with angle ω = |ω|

evaluates to

exp
(
− i

2
ω · σ

)
= 1 cos

ω

2
− iω̂ · σ sin

ω

2
(3)

where σ = (σx, σy, σz)
T are the Pauli matrices.

Hint: Use that σiσj = δij1+ iεijkσk.

b) The rotation of a spin-1
2
particle is described by Uω = exp (−iω S · ω̂/~) with the spin operator

Si =
~
2
σi (c.f. Problem 1).

Evaluate |Ψω〉 = Uω |+〉 explicitely for |+〉 = (|↑〉+ |↓〉)/
√
2 and ω̂ = (1, 0, 0)T . What happens

for a full rotation with ω = 2π and is this a problem from the physical perspective?
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Problem 3: Clebsch-Gordan coefficients and spin-orbit coupling (Oral)

Learning objective

In this problem you apply the angular momentum addition theorem. As an important use case, we consider
the spin-orbit coupling in the hydrogen atom, which is the leading relativistic correction (see end of
the course). In particular, you practice the construction of the new basis states for a fixed total angular
momentum.

The spin-orbit coupling between the electron’s spin S and the orbital angular momentum L for a
hydrogen atom is given by the Hamiltonian

HLS = f(r)L · S = f(r)
∑

α=x,y,z

Lα ⊗ Sα , (4)

where f(r) = e2/2m2
ec

2r3.The spin-orbit coupling can be seen as a perturbation to the non-relativistic
Hamiltonian H0 = P2/2m− e2/r of the hydrogen atom.

a) Define the total angular momentum operator as

J = L+ S = L⊗ 1+ 1⊗ S (5)

and show that J2 and Jz commute both with H0 and HLS.

b) Consider the subspace with orbital angular momentum ` and spin s. We can write the eigenstates
|j,m〉 of J2 and Jz as linear combinations of Lz- and Sz-eigenstates |m`,ms〉 = |`,m`〉 ⊗ |s,ms〉,

|j,m〉 =
∑
m`,ms

c(m`,ms; j,m) |m`,ms〉 . (6)

The coefficients c are called Clebsch-Gordan coefficients. Due to their ubiquity in quantum physics
there are comprehensive tables available, e.g.,

http://pdg.lbl.gov/2011/reviews/rpp2011-rev-clebsch-gordan-coefs.pdf.

Use this table to write down the change of basis (6) in the subspace with ` = 1 and s = 1/2
explicitely.

c) Derive the Clebsch-Gordan coefficients in b) by hand.
Hint: Start with the stretched state |j = 3/2,mj = 3/2〉 and use the ladder operator J− = Jx−iJy
which acts as

J− |j,m〉 = ~
√

j(j + 1)−m(m− 1) |j,m− 1〉 . (7)
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