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Problem 1: Fermions on a Ladder (Oral)

Learning objective

The goal in this problem is to become familiar with basis transformations in the formalism of second
quantization. As an example, you will study the transition between real space and momentum space and
therefore learn how to diagonalize a lattice Hamiltonian by means of a Fourier transform.
You will need the acquired skills in Problem 2 below.

Consider a ladder (two parallel chains labeled a and b) with Hamiltonian

H = −t
L∑
i=1

(a†iai+1 + b†ibi+1 + h.c.)− t⊥

L∑
i=1

(a†ibi + b†iai) + U
L∑
i=1

na
i n

b
i . (1)

Here, ai and bi are fermionic operators of two modes located at position i (for example, two spin
states of a fermion, see Problem 2), t is the hopping amplitude for the intra-chain hopping, while
t⊥ is the hopping amplitude for the inter-chain hopping. The last term (nx

i = x†
ixi with x = a, b)

accounts for the interaction between adjacent fermions on the two chains. Assume that each chain of
the ladder has L sites and that the lattice spacing on each chain is d. Further assume that the ladder
has periodic boundary conditions (i.e., i+ 1 = 1 for i = L).

a) First, introduce the operators

ãk =
1√
L

L∑
j=1

eikdjaj , b̃k =
1√
L

L∑
j=1

eikdjbj , (2)

and show that this transformation is canonical, that is, show that the new operators still obey
canonical anticommutation relations. What are the allowed values for k?

b) Consider the case where t⊥ = 0 and transform the Hamiltonian (1) into momentum space.
Can you infer the spectrum from your result (no calculation needed)?

c) Finally, let U = 0 and t⊥ 6= 0. Calculate the spectrum E±
k of (1) using the Fourier transform (2).

Hint: Bring the Hamiltonian into the form

H =
∑
k

(
ã†k b̃†k

)
Hk

(
ãk
b̃k

)
, (3)

where Hk is a Hermitian 2× 2-matrix.
The spectrum can then be obtained by diagonalizing this matrix (why?).
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Problem 2: The Fermi-Hubbard Model (Oral)

Learning objective

This problem studies the Fermi-Hubbard model, describing interacting fermions on a lattice. It demonstra-
tes a very important application of many-body theory in quantum mechanics within the framework of
second quantization. Despite its simple Hamiltonian, the Fermi-Hubbard model features rich physics and
is subject to ongoing research both experimentally and theoretically. Among others, it is of particular
interest as a model for high-temperature superconductivity (where BCS theory does not apply, cf. Problem
3 below).

Here we study N interacting spin-1/2 fermions in a deep lattice. This many-body system (N � 1) is
well described by the Hamiltonian

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

c†i,↑c
†
i,↓ci,↓ci,↑ , (4)

where c†i,σ, ci,σ are the creation and annihilation operators of fermions with spin σ ∈ {↑, ↓} localized
on lattice site i.

The first term of the Hamiltonian describes the kinetic energy of fermions hopping from lattice
site j to lattice site i (thereby gaining energy t). The sum is restricted to nearest-neighbor sites of
the D-dimensional lattice, indicated by 〈i, j〉. The second term of the Hamiltonian accounts for the
interaction of two fermions with opposite spin: It describes the cost in energy (U > 0) to put two
fermions with opposite spin on the same lattice site. The interaction is on-site (restricted to one
lattice site) due to the localization of the fermions in the deep lattice.

In the following, we derive the ground state of this system at half-filling in the limits t = 0 and U = 0.
“Half-filling” means that there is exactly one fermion per lattice site (in a completely filled lattice,
there are two particles of opposite spin per site). For simplicity, we consider a D = 1-dimensional
lattice of L sites with lattice constant a and periodic boundary conditions.

a) First, consider the case U = 0 where the ground state is given by a Fermi sea and calculate the
ground state energy (assume N = L � 1 to simplify your result).
Derive the first-order correction to the ground state energy for small interactions 0 < U � t.

b) Now consider the case where t = 0 and U > 0. Determine the ground state(s) in this regime and
calculate the ground state energy.

The ground state manifold describes a Mott insulator and is highly degenerate (why?). What is
the energy gap that separates the ground states from the first excited states with one doubly
occupied site?

To derive leading corrections to the ground state energy, we use (degenerate) perturbation theory
for t � U . Sketch the derivation and estimate the leading corrections to the energy.

Hint: Show that the first-order contribution vanishes and derive an upper bound for the matrix
elements of the second-order correction (diagonalization of the matrix is not required).

c) Explain why your results suggest a phase transition between a metallic (conducting) phase for
small interactions (U � t) and an insulating phase for large interactions (U � t).
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Problem 3: The BCS Ground State (Written)

Learning objective

The BCS theory describes conventional superconductors. Here you study the BCS ground state wavefunc-
tion as an example for a quasiparticle vacuum, i.e., the ground state of a non-interacting fermionic theory.
This problem also serves as exercise for calculations in the formalism of second quantization.

We consider the famous BCS state (named after J. Bardeen, L. N. Cooper, J. R. Schrieffer)

|Ω〉 =
∏
k

(
uk + vk c

†
k,↑c

†
−k,↓

)
|0〉 , (5)

where uk, vk ∈ C with |uk|2 + |vk|2 = 1 and the fermionic operator c†k,σ creates a fermion with
momentum k and spin σ ∈ {↑, ↓}. The product runs over the Brillouin zone of the lattice (which we
do not specify here).

a) Show that the BCS state |Ω〉 is normalized.

b) Evaluate 〈Ω| c†q,↑c
†
−q,↓ |Ω〉 and 〈Ω| c†q,σcq,σ |Ω〉 for a given wave vector q.

c) Introduce the new quasiparticle operators αk,σ via

αk,↑ = ukck,↑ − vkc
†
−k,↓ and α−k,↓ = ukc−k,↓ + vkc

†
k,↑ . (6)

Prove that these operators obey fermionic anticommutation relations.
Show that αk,σ |Ω〉 = 0 for all k and σ and write down a Hamiltonian for which |Ω〉 is the ground
state (the quasiparticle vacuum).

d) What choice of uk and vk makes |Ω〉 the ground state of free fermions (with eigenmodes ck,σ)?
In this case, what does α†

k,σ describe for |k| ≶ kF where kF denotes the Fermi wave vector?
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