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Institute for Theoretical Physics Ill, University of Stuttgart WS 2018/19

Problem 1: The Casimir effect (Written, volunteer)

Owing to quantum fluctuations of the electromagnetic field, there is an attractive force between two
parallel metallic plates separated by a distance d, even if the two plates are located in a vacuum and
are electrically neutral. This is known as the Casimir effect. As we will see in this exercise, for two
plates of area A separated by a distance d, the energy shift due to vacuum fluctuations is

72 hA
Due to this energy shift, the force between the two plates is non zero and attractive
2
F = _—8U<d’ A) = _W_@ (2)

od 240 a4

This has been confirmed experimentally in 1958 by Sparnay (It was realized using 1 cm? Chrome-Steal
plates; at d = 0.5/ the attraction was 0.2 dyn/cm”).

a) Let us consider an electromagnetic field confined in a rectangular cavity (of dimensions Ly x
Ly x L3) with conducting walls. We must have E perpendicular and B tangential (the transverse
component of the electric field vanishes at the surface of a perfect conductor). Show that these
boundary conditions are satisfied by plane waves (~ e~?) if the components of the electric field
have the following form

E1 = E? COS (/ﬁIl) sin (]{]2.132) sin (/{73373) e*i”t, (3)
£y = Eg sin (k1z1) cos (koxo) sin (ksws) e ™", (4)
Es = EY sin (ki) sin (koxy) cos (kszs) e ™", (5)

where k; = n;m/L; and n; € 7 and that the possible frequencies w are restricted by the dispersion
relation of light

lch(nl, ny,nz) = k* = Z(n?/Lf) (6)

c2

b) Show that the corresponding boundary conditions for the magnetic field B are fulfilled auto-
matically. Recall that the magnetic field B is related to the electric field by the induction law
V X E =i (w/c)B.

c¢) The amplitudes E? are fixed by the condition V - E = 0, i.e. and thus satisfy

> Elk; =0. (7)

Show that in general equation (7) has two linearly independent solutions, corresponding to the
two polarizations of the electromagnetic field, except when one of the n; vanish, that there is
just one solution. If more than one vanish then there is no solution.
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Abbildung 1: Setup of the two plates used to measure the Casimir effect.

Consider now two conducting and non-charged plates of dimensions L x L placed in a paral-
lelogram with conducting walls as shown in the Figure 1. One conducting plate is fixed at the
beginning of the box, while the second plate is chosen to be at a distance d from the former. This
second plate will be moved to a distance R/n (with arbitrary > 0) in a forthcoming step. We
can define

U(d, L, R) = g[(d) + 5[[(R — d) — [EIH(R/U) + gjv(R — R/n)] , (8)

as the energy difference between the zero point energies of the initial and final configurations,
where &, 11, £111, Erv refer to the zero-point energy of each subspace, respectively. Show that
each of them is divergent.

Defining these subspaces are indeed a tool to avoid divergences, as we are actually interested in
taking the limit

U(d,L) = lim U(d,L, R) . )

R—o0

Thus, we need first to regularize the sums of the zero-point energy prior to calculation of Eq. (9).
After the computation of Eq. (9), we will undo the regularization.

A convenient regularization method is the following
TE, ]'
Erir = & = ; 3 hw exp|—aw/mc] . (10)

Taking into account the dispersion relation (6) we have

g;eg = hC Z kl,m,n(da L’ L) eXP[_ <a/ﬂ-) kl,mm(d’ L’ L))} ? (11)

l,m,n

where

I\ > mm 2 nm 2
Kimn(d, L, L) = \/(E) + (T) + <f> . (12)

We can define the regularized energy difference Eq. (8) as

U (d, L, R, ) = £7(d) + & (R — d) = {&1](R/n) + €/ (R — R/n)} . (13)
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f) Let us consider the sum in equation (11). Consider very large L and replace the sums over m
and n by integrals (a more precise way would be to study U"*9(d, R, L? «)/L?* when L goes to
infinity) obtaining

E9d,La) = hci/ooodm/ooodn\/(%>2 4 (%)2 4 (%)2 X
=0
o2 () (2 ()| o

In equation (13) the term with [ = 0 does not contribute to the sum. Therefore we can neglect it.
Transform equation (14) into

2 3 e o0
T’eg__ﬂ'_ 2d_
£ =~ helL da?’;/o

Perform the sum over [ and then take the derivative with respect to «, arriving to

eres _ w2hel? d? d/a (16)
L 2d  da? expla/d] —1°

dz [
—— 1 . 1
1+zexp{ da\/ +2} (15)

g) Calculate U™ and obtain Eq. (1) by taking the limits
lim lim U"(d, L, R, @) (17)

R—o0 a—0

Hint: %= = 3> B2y where the B, are the Bernoulli numbers.

eY n=0

Problem 2: Planck’s radiation law (Oral)

Learning objective

In this problem, you derive Planck’s radiation law of a black body which was a pioneering result in
modern physics and quantum theory in particular.

First, consider a single mode of the electromagnetic field (without polarization) with Hamiltonian
H = hwyalay . (18)

a) Calculate the partition sum 7 and write down the thermal state p at temperature 7.

b) Calculate the mean particle number 7 = (n) and the mean energy £ = (H) for the thermal state
p.
In order to derive Planck’s radiation law, consider a three-dimensional box of volume V = L3
with periodic boundary conditions. The Hamiltonian of the system is now given by

H = Z hwkCLL)\(lk’A s (19)

k)

where wy = c¢|k| and ) is the polarization of the mode k.
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c) Based on your results in subtask b), calculate the spectral energy density u,,(7")dw and the total
energy density u(7).

Hints:
+ The system now consists of independent harmonic oscillators.

« The spectral energy density u,dw is given by the product of the energy and the density of
states in the frequency interval [w,w + dw].

« In order to calculate the density of states, first calculate the mode spacing and then take the
limit L — oo.

o0 3 4
3 ont
¢ b[dxez—l ~ 15
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