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Problem 1: The Casimir effect (Written, volunteer)

Owing to quantum fluctuations of the electromagnetic field, there is an attractive force between two
parallel metallic plates separated by a distance d, even if the two plates are located in a vacuum and
are electrically neutral. This is known as the Casimir effect. As we will see in this exercise, for two
plates of area A separated by a distance d, the energy shift due to vacuum fluctuations is

U(d,A) = − π2

720

~A
d3

. (1)

Due to this energy shift, the force between the two plates is non zero and attractive

F = −∂U(d,A)

∂d
= − π2

240

~A
d4

. (2)

This has been confirmed experimentally in 1958 by Sparnay (It was realized using 1 cm2 Chrome-Steal
plates; at d = 0.5µ the attraction was 0.2 dyn/cm2).

a) Let us consider an electromagnetic field confined in a rectangular cavity (of dimensions L1 ×
L2 × L3) with conducting walls. We must have E perpendicular and B tangential (the transverse
component of the electric field vanishes at the surface of a perfect conductor). Show that these
boundary conditions are satisfied by plane waves (∼ e−iωt) if the components of the electric field
have the following form

E1 = E0
1 cos (k1x1) sin (k2x2) sin (k3x3) e

−iωt, (3)
E2 = E0

2 sin (k1x1) cos (k2x2) sin (k3x3) e
−iωt, (4)

E3 = E0
3 sin (k1x1) sin (k2x2) cos (k3x3) e

−iωt , (5)

where ki = niπ/Li and ni ∈ Z and that the possible frequencies ω are restricted by the dispersion
relation of light

1

c2
ω2(n1, n2, n3) = k2 = π2

∑
i

(n2
i /L

2
i ). (6)

b) Show that the corresponding boundary conditions for the magnetic field B are fulfilled auto-
matically. Recall that the magnetic field B is related to the electric field by the induction law
∇× E = i (ω/c)B.

c) The amplitudes E0
i are fixed by the condition ∇ · E = 0, i.e. and thus satisfy∑

i

E0
i ki = 0. (7)

Show that in general equation (7) has two linearly independent solutions, corresponding to the
two polarizations of the electromagnetic field, except when one of the ni vanish, that there is
just one solution. If more than one vanish then there is no solution.
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Abbildung 1: Setup of the two plates used to measure the Casimir effect.

d) Consider now two conducting and non-charged plates of dimensions L× L placed in a paral-
lelogram with conducting walls as shown in the Figure 1. One conducting plate is fixed at the
beginning of the box, while the second plate is chosen to be at a distance d from the former. This
second plate will be moved to a distance R/η (with arbitrary η > 0) in a forthcoming step. We
can define

U(d, L,R) ≡ EI(d) + EII(R− d)− [EIII(R/η) + EIV (R−R/η)] , (8)

as the energy difference between the zero point energies of the initial and final configurations,
where EI , EII , EIII , EIV refer to the zero-point energy of each subspace, respectively. Show that
each of them is divergent.

Defining these subspaces are indeed a tool to avoid divergences, as we are actually interested in
taking the limit

U(d, L) = lim
R→∞

U(d, L,R) . (9)

Thus, we need first to regularize the sums of the zero-point energy prior to calculation of Eq. (9).
After the computation of Eq. (9), we will undo the regularization.

e) A convenient regularization method is the following

EI,II → Ereg
I,II =

∑
ω

1

2
~ω exp[−αω/πc] . (10)

Taking into account the dispersion relation (6) we have

Ereg
I = ~c

∑
l,m,n

kl,m,n(d, L, L) exp[− (α/π) kl,m,n(d, L, L))] , (11)

where

kl,m,n(d, L, L) =

√(
lπ

d

)2

+
(mπ

L

)2

+
(nπ
L

)2

. (12)

We can define the regularized energy difference Eq. (8) as

U reg (d, L,R, α) = Ereg
I (d) + Ereg

II (R− d)− {Ereg
III (R/η) + Ereg

IV (R−R/η)} . (13)
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f) Let us consider the sum in equation (11). Consider very large L and replace the sums over m
and n by integrals (a more precise way would be to study U reg(d,R, L2, α)/L2 when L goes to
infinity) obtaining

Ereg
I (d, L, α) = ~c

∞∑
l=0

∫ ∞

0

dm

∫ ∞

0

dn

√(
lπ

d

)2

+
(mπ

L

)2

+
(nπ
L

)2

×

exp

−α

π

√(
lπ

d

)2

+
(mπ

L

)2

+
(nπ
L

)2

 . (14)

In equation (13) the term with l = 0 does not contribute to the sum. Therefore we can neglect it.
Transform equation (14) into

Ereg
I = −π2

4
~c L2 d3

dα3

∞∑
l=1

∫ ∞

0

dz

1 + z
exp

[
− l

d
α
√
1 + z

]
. (15)

Perform the sum over l and then take the derivative with respect to α, arriving to

Ereg
I =

π2~cL2

2d

d2

dα2

d/α

exp[α/d]− 1
. (16)

g) Calculate U reg and obtain Eq. (1) by taking the limits

lim
R→∞

lim
α→0

U reg(d, L,R, α) (17)

Hint: y
ey−1

=
∑∞

n=0
Bn

n!
yn where the Bn are the Bernoulli numbers.

Problem 2: Planck’s radiation law (Oral)

Learning objective

In this problem, you derive Planck’s radiation law of a black body which was a pioneering result in
modern physics and quantum theory in particular.

First, consider a single mode of the electromagnetic field (without polarization) with Hamiltonian

H = ~ωka
†
kak . (18)

a) Calculate the partition sum Z and write down the thermal state ρ at temperature T .
b) Calculate the mean particle number n̄ = 〈n〉 and the mean energy Ē = 〈H〉 for the thermal state

ρ.
In order to derive Planck’s radiation law, consider a three-dimensional box of volume V = L3

with periodic boundary conditions. The Hamiltonian of the system is now given by

H =
∑
k,λ

~ωka
†
k,λak,λ , (19)

where ωk = c|k| and λ is the polarization of the mode k.
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c) Based on your results in subtask b), calculate the spectral energy density uω(T )dω and the total
energy density u(T ).

Hints:

• The system now consists of independent harmonic oscillators.

• The spectral energy density uωdω is given by the product of the energy and the density of
states in the frequency interval [ω, ω + dω].

• In order to calculate the density of states, first calculate the mode spacing and then take the
limit L → ∞.

•
∞∫
0

dx x3

ex−1
= π4

15
.
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