Institute for Theoretical Physics III, University of Stuttgart

Problem 1: Stark Effect for a Harmonic Oscillator (Oral)

Learning objective

The goal of this problem is to apply a static perturbation (as derived in the lecture) up to second order for a simple setup. This setup has the special property that an exact solution exists and therefore the perturbation theory can be tested by a comparison with the exact solution.

The Hamiltonian of a one-dimensional harmonic oscillator within a homogeneous electric field E is given by

$$H = \frac{1}{2} \left(P^2 + Q^2 \right) + eEQ \,, \tag{1}$$

where the Hamiltonian is dimensionless, i.e., [Q, P] = i. Consider the second term of the Hamiltonian as a perturbation of the free oscillator, that is, $H_1 = Q$ and $\lambda = eE$.

- a) Calculate the perturbed eigenfunctions and energy eigenvalues up to second order in λ .
- b) Compare the result of perturbation theory with the exact solution for the energy of the problem.

Problem 2: Fermi's Golden Rule (Written)

Learning objective

This assignment is a repetition of the derivation of Fermi's golden rule. To this end, a system with a periodic perturbation in time that is adiabatically switched on is studied; this requires some modifications of the proof presented in the lecture.

Consider a system with Hamiltonian H_0 , eigenstates $|n\rangle$ and eigenenergies E_n . We prepare the system in the initial state $|n = i\rangle$ at $t_0 = -\infty$ and slowly ramp up the periodic perturbation $V \cos(\omega t)$ with frequency ω and static perturbation V, i.e.,

$$H'(t) = V \cos\left(\omega t\right) \exp\left(\eta t\right) \tag{2}$$

for $\eta > 0$ (so that H'(t) = 0 for $t \to -\infty = t_0$).

Derive Fermi's golden rule in the adiabatic limit $\eta \to 0$, i.e., calculate the transition rate $\Gamma_{i\to f}$ from the initial state $|i\rangle$ to some final state $|f\rangle$ with energy E_f .

Hint: Use the Dirac sequence $\lim_{\eta\to 0} \frac{\eta}{x^2+\eta^2} = \pi \,\delta(x)$ and neglect the oscillating contributions to the transition rate (why is this reasonable?).

Problem 3: Time-Dependent Perturbation Theory (Written)

Learning objective

The first subtask is an application of time-dependent perturbation theory in first order. The goal is to identify the correct transition amplitude and evaluate the integrations analytically. The second subtask is a challenging calculation to derive the *exact* solution of the problem—a useful repetition/application of important methods in quantum mechanics. This problem is one of the few examples where the time evolution can be solved analytically (which allows for a verification of perturbation theory).

We investigate a one-dimensional harmonic oscillator with mass m, charge e, and frequency ω in a time-dependent electric field E(t). The Hamiltonian is of the form

$$H = H_0 + H'(t) ,$$

where $H_0 = \frac{p^2}{2m} + \frac{m}{2}\omega^2 x^2$ (harmonic oscillator)
and $H'(t) = ex E(t)$ (perturbation). (3)

The time-dependency of the external electric field is given by

$$E(t) = \frac{A}{\tau \sqrt{\pi}} e^{-(t/\tau)^2},$$
(4)

where $A \in \mathbb{R}$ is a constant and $\tau > 0$ is the decay rate.

a) Calculate the transition probability $P_{0\to n}(t, t_0)$ from the ground state $|0\rangle$ at $t_0 = -\infty$ to an excited state $|n\rangle$ at $t = +\infty$ in first order perturbation theory. What happens for $\tau \to 0$?

Hint: Use $x = \sqrt{\frac{\hbar}{2m\omega}} (a^{\dagger} + a)$ to evaluate the matrix element.

b) The transition probability can also be calculated *exactly*. Prove that the exact expression of $P_{0\to n}(t, t_0)$ for $t_0 = -\infty$ and $t = +\infty$ reads

$$P_{0\to n} = \frac{K^{2n}}{n!} e^{-K^2} \quad \text{with} \quad K = \frac{eA}{\sqrt{2m\omega\hbar}} e^{-\omega^2 \tau^2/4} \,, \tag{5}$$

and compare the result with a).

Hint: Use the Dirac picture (as introduced in the lecture) and derive the equation of motion

$$i\hbar\partial_t |\psi_D(t)\rangle = H'_D(t) |\psi_D(t)\rangle$$
 with $H'_D(t) = \sqrt{\frac{\hbar}{2m\omega}} eE(t) \left[e^{-i\omega t}a + e^{i\omega t}a^{\dagger}\right]$. (6)

Then use the ansatz $|\psi_D(t)\rangle = \exp\left[-iK(t)a^{\dagger}\right]\left|\bar{\psi}(t)\right\rangle$ and choose K(t) as

$$K(t) = \frac{e}{\sqrt{2m\hbar\omega}} \int_{-\infty}^{t} e^{i\omega s} E(s) \,\mathrm{d}s \tag{7}$$

to eliminate a^{\dagger} from the Schrödinger equation. To this end, the relation $e^{iK(t)a^{\dagger}} a e^{-iK(t)a^{\dagger}} = a - iK(t)$ can be used to derive a differential equation for $|\bar{\psi}(t)\rangle$. Solve this equation with an ansatz $|\bar{\psi}(t)\rangle \propto |0\rangle$ to find the exact solution $|\psi(t)\rangle$ for the wave function in the Schrödinger picture. The transition probability is then $P_{0\to n} = |\langle n|\psi(t=\infty)\rangle|^2$.