Problem 1: Density matrix (Oral)

Learning objective

The purpose of this problem is to get familiar with the concept of the density matrix (operator) and calculate some important properties.

- a) Show that $\rho^{\dagger} = \rho$ and $tr(\rho) = 1$.
- b) Show that $tr(\rho^2) \leq 1$ and equality holds for a pure state. Show also that for a pure state $\rho^2 = \rho$.
- c) Show that the expectation value of an operator O is given by $\langle O \rangle = tr(\rho O)$.
- d) Show that the equation of motion of the density matrix $\rho(t)$ of a system with Hamiltonian H is given by the von Neumann equation

$$i\hbar\partial_t \rho(t) = [H, \rho(t)]. \tag{1}$$

e) Consider a canonical ensemble at temperature T. Show that for a system with Hamiltonian H, the thermal density matrix is given by

$$\rho = \frac{1}{Z} \sum_{n} e^{-\beta E_n} \left| n \right\rangle \left\langle n \right| = \frac{1}{Z} e^{-\beta H}, \tag{2}$$

where $\beta = \frac{1}{k_B T}$, $Z = \operatorname{tr}(e^{-\beta H})$ is the partition function, and $H |n\rangle = E_n |n\rangle$.

Problem 2: Free fermions at finite temperature (Oral)

Learning objective

In this problem, you derive the Fermi-Dirac distribution. The distribution provides the average number of fermions in a single quantum state for a system of identical free fermions in thermodynamic equilibrium.

A system of free fermions is connected to a reservoir with which it can exchange energy and particles. Transferring a fermion from the system to the reservoir costs the energy μ (chemical potential). In the following, we consider a single quantum state $|\mathbf{p}\sigma\rangle$ of the system in thermodynamic equilibrium with momentum \mathbf{p} , spin σ , and energy $\epsilon_{\mathbf{p}}$. The state can be either occupied by one fermion or empty.

a) Show that the density matrix in the grand canonical ensemble at temperature T is given by

$$\rho_{\mathbf{p}\sigma} = \frac{1}{1 + e^{-\beta(\epsilon_{\mathbf{p}}-\mu)}} e^{-\beta(\epsilon_{\mathbf{p}}-\mu)c^{\dagger}_{\mathbf{p}\sigma}c_{\mathbf{p}\sigma}} , \qquad (3)$$

with $\beta = \frac{1}{k_B T}$. Use this result to calculate $\langle n_{\mathbf{p}\sigma} \rangle$, which yields the Fermi-Dirac distribution. Plot the distribution as a function of $\epsilon_{\mathbf{p}}$ for different T.

b) Take the limit $T \rightarrow 0$ and interpret the result.

Problem 3: Coherent states (Written)

Learning objective

In this problem you calculate some important properties of *coherent states*, which are quantum states that most closely resemble classical light. Coherent states are ubiquitous in quantum physics and are, for example, an important concept in quantum optics.

A coherent state $|\alpha\rangle$ (sometimes called *Glauber state*) is defined as the right-eigenstate of the (bosonic) annihilation operator a,

$$a \left| \alpha \right\rangle = \alpha \left| \alpha \right\rangle \,,$$

(4)

with eigenvalue $\alpha \in \mathbb{C}$.

- a) Determine the coefficients $c_n(\alpha)$ of the expansion $|\alpha\rangle = \sum_{n=0}^{\infty} c_n(\alpha) |n\rangle$ for the normalized coherent state, $\langle \alpha | \alpha \rangle = 1$, where $|n\rangle$ is the eigenstate of the occupation operator $n = a^{\dagger}a$.
- b) Introduce the displacement operator $D(\alpha) = \exp(\alpha a^{\dagger} \alpha^* a)$ and show that it creates a coherent state $|\alpha\rangle$ when applied to the vacuum $|0\rangle$.

Hint: Use the Baker-Campbell-Hausdorff (BCH) formula,

$$e^{A}e^{B} = e^{A+B+\frac{1}{2}[A,B]},$$
(5)

if the commutator [A, B] commutes with A and B.

- c) Calculate the mean particle number $\langle n \rangle = \langle \alpha | n | \alpha \rangle$ and the variance $(\Delta n)^2 = \langle n^2 \rangle \langle n \rangle^2$. To which probability distribution does this correspond?
- d) Consider a one-dimensional harmonic oscillator with the Hamiltonian $H = \hbar \omega \left(n + \frac{1}{2}\right)$ in the initial state $|\psi(t=0)\rangle = |\alpha_0\rangle$. Show that the time evolution can be written as $|\psi(t)\rangle = e^{i\phi(t)} |\alpha(t)\rangle$ with some time-dependent phase $\phi(t)$ and a time-dependent parameter $\alpha(t)$.
- e) Compute the overlap $\langle \alpha | \alpha' \rangle$ and the operator $\int d^2 \alpha | \alpha \rangle \langle \alpha |$. Interpret your results.

Hint: The integral $\int d^2 \alpha = \int d(\operatorname{Re} \alpha) \int d(\operatorname{Im} \alpha)$ sums over all *complex* values of α . Evaluate this integral in polar coordinates and use the Gamma function $\Gamma(x) = \int_0^\infty dz \, z^{x-1} e^{-z}$ with $\Gamma(n) = (n-1)!$.