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Problem 1: The Casimir effect (Written and Bonus)

Learning objective

In this problem, you study the Casimir effect which is a quantum effect that, owing to quantum fluctuations
of the electromagnetic field, leads to an attractive force between two parallel conducting plates in vacuum.
This effect was predicted by H. Casimir in 1948a and experimentally confirmed by Sparnaay in 1958b.
aHendrik Casimir, On the attraction between two perfectly conducting plates. Proc. Kon. Nederland. Akad. Wetensch.
B51, 793 (1948)

bM.J. Sparnaay, Measurements of attractive forces between flat plates, Physica 24, 751-764 (1958)

a) Let us consider an electromagnetic field confined in a rectangular cavity (of dimensions L1 ×
L2 × L3) with conducting walls. Since the transverse component of the electric field vanishes at
the surface of a perfect conductor, E has to be perpendicular and B parallel to the walls at the
boundaries. Show that these boundary conditions are satisfied by plane waves (∼ e−iωt) if the
components of the electric field have the following form

E1 = E0
1 cos (k1x1) sin (k2x2) sin (k3x3) e

−iωt , (1)
E2 = E0

2 sin (k1x1) cos (k2x2) sin (k3x3) e
−iωt , (2)

E3 = E0
3 sin (k1x1) sin (k2x2) cos (k3x3) e

−iωt , (3)

where ki = niπ/Li and ni ∈ Z and that the possible frequencies ω are restricted by the dispersion
relation of light

1

c2
ω2(n1, n2, n3) = k2 = π2

∑
i

(n2
i /L

2
i ). (4)

b) Show that the corresponding boundary conditions for the magnetic field B are fulfilled automat-
ically. Recall that the magnetic field B is related to the electric field by the Maxwell-Faraday
equation∇× E = i (ω/c)B.

c) The amplitudes E0
i are fixed by the condition ∇ · E = 0 and thus satisfy∑

i

E0
i ki = 0. (5)

Show that in general equation (5) has two linearly independent solutions, corresponding to the
two polarizations of the electromagnetic field. Show that if one of the ni vanishes, there is only
one solution while there is no solution if two or more vanish.

d) Consider now two conducting and non-charged, conducting plates of dimensions L× L placed
parallel to each other as shown in Figure 1. One conducting plate is fixed at the beginning of the
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Figure 1: Setup of the two plates used to measure the Casimir effect.

box, while the second plate is chosen to be at a distance d from the former. This second plate will
be moved to a distance R/η (with arbitrary η > 0) in a forthcoming step. We can define

U(d, L,R) := EI(d) + EII(R− d)− [EIII(R/η) + EIV (R−R/η)] , (6)

as the energy difference between the zero point energies of the initial and final configurations,
where EI , EII , EIII , EIV refer to the zero-point energy of each section, respectively. Show that
each of the energies is divergent.

Defining these sections is indeed a tool to avoid divergences, as we are actually interested in taking
the limit

U(d, L) = lim
R→∞

U(d, L,R) . (7)

Therefore, we first regularize the sums of the zero-point energy before calculating Eq. (7). In the end,
we undo the regularization in order to arrive at the final result.

As the divergence comes from contributions from high-frequencies, a convenient regularization
method is to introduce some high-frequency cut-off

EI,II → Ereg
I,II =

∑
ω

1

2
~ω exp[−αω/πc] , (8)

where the limitα → 0 corresponds to the case we are interested in. Taking into account the dispersion
relation (4), we have

Ereg
I = ~c

∑
l,m,n

kl,m,n exp[− (α/π) kl,m,n)] , (9)

where

kl,m,n =

√(
lπ

d

)2

+
(mπ

L

)2

+
(nπ
L

)2

. (10)

The regularized energy difference is then defined as

U reg (d, L,R, α) = Ereg
I (d) + Ereg

II (R− d)− [Ereg
III (R/η) + Ereg

IV (R−R/η)] . (11)
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Consider now the sum in equation (9). For largeL, one can replace the sums overm and n by integrals
(a more precise way would be to study U reg(d,R, L2, α)/L2 when L goes to infinity) obtaining

Ereg
I (d, L, α) = ~c

∞∑
l=0

∫ ∞

0

dm
∫ ∞

0

dn

√(
lπ

d

)2

+
(mπ

L

)2

+
(nπ
L

)2

×

exp

−α

π

√(
lπ

d

)2

+
(mπ

L

)2

+
(nπ
L

)2

 . (12)

As the term with l = 0 in (12) only depends on α, it does not contribute to the energy difference (11)
and can simply be neglected in the following.

e) Show that equation (12) can be written as

Ereg
I = −π2

4
~c L2 d3

dα3

∞∑
l=1

∫ ∞

0

dz
1 + z

exp
[
− l

d
α
√
1 + z

]
. (13)

Perform the summation over l and then take the derivative with respect to α, arriving to

Ereg
I =

π2~cL2

2d

d2

dα2

d/α

exp[α/d]− 1
. (14)

f) Calculate U reg by taking the limits

lim
R→∞

lim
α→0

U reg(d, L,R, α) (15)

and show that the energy shift due to the vacuum fluctuations is given by

U(d,A) = − π2

720

~cA
d3

, (16)

where A = L2 is the surface of one plate. Due to this energy shift, there is a non-zero, attractive
force between the two plates

F = −∂U(d,A)

∂d
= − π2

240

~cA
d4

. (17)

.
Hint: y

ey−1
=

∑∞
n=0

Bn

n!
yn where the Bn are the Bernoulli numbers.

Page 3/3


