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Problem 1: Decay of Metastable States (Written, 4 points + 3 bonus points (?))

Learning objective

Tunneling is an important quantum mechanical phenomenon with wide macroscopic implications, one

example is radioactive decay. Double well potentials are often employed to model the decay of metastable

states caused by tunneling. In this exercise you will study this phenomena employing a simple symmetric

potential well with finite walls and depth (double well in one direction). You will find that expanding

equation (2) determines the energy eigenvalues, and the decay rate can be related to their imaginary part.

We consider a particle in the potential V (x) (see figure below). It can be expected that for F � V
and V � E > 0 the system possesses states that correspond to bound states, but which are not

stable and can decay through quantum mechanical tunneling out of the central potential well. In

the following we restrict ourselves to symmetric wave functions, which are described by the ansatz:

|x| < a : ψ(x) = cos(qx)

a < |x| < a+ b : ψ(x) = A exp [−κ(|x| − a)] +B exp [κ(|x| − a)] (1)

|x| > a+ b : ψ(x) = C exp [ik(|x| − a− b)]

with q =
√
2mE/h̄, κ =

√
2m(V − E)/h̄ and k =

√
2m(E + F )/h̄. Note that this ansatz contains

only an outgoing plane wave for |x| > a+ b. Such an ansatz introduces boundary conditions which

violate the hermiticity of the Hamiltonian, i.e. a finite probability current is leaving the system and

the norm of the wave function is no longer conserved. As a consequence the eigenenergies have an

imaginary part. These wave functions are termed metastable states.

a) Formulate the continuity conditions for the wave function ψ(x) and its derivative ψ′(x) at each
potential step and show that the following implicit equation determines the eigenenergies En.
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Expand in the small parameter κ/k.

q sin(qa) = κ(A−B) = κ cos(qa)

[
coth(κb) +

κ

ik sinh(κb)2
+O

(
(κ/k)2

)]
(2)

We consider a large barrier, i.e. tunneling is exponentially suppressed by exp(−2κb). Therefore

expand Eq. (2) in the small parameter exp(−2κb).

b) To zeroth order in exp(−2κb) the eigenenergies are those of a potential well of finite depth.

Show that for q/κ� 1 the lowest eigenergy E0 has the following form

E0 =
h̄2q20
2m

with q0 =
π/2

a+ 1/κ
. (3)

c) To first order in exp(−2κb) the energy Ems can be written as

Ems = E0 +∆− iΓ/2. (4)

Determine ∆ and Γ. Show that the imaginary part of the energy can be interpreted as a decay

rate

〈ψ(t)|ψ(t)〉 ∼ exp(−Γt). (5)

Note that |ψ(t)〉 is the wavefunction inside the well.

d) Show that the probability current density is given by the following relations

j(x = a+ b, t = 0) =
h̄k

m
|ψ(a+ b, 0)|2/N =

Γ

2h̄
. (6)

What is a meaningful normalization N of the wavefunction ?

e)? Nowwe consider the true eigenenergies of the potential V (x)which respect the hermiticity of the

Hamiltonian. Such solutions are characterized by an ingoing and outgoing wave for |x| > a+ b.
The ground state and first excited state in a symmetric potential behave asymptotically (for

|x| → ∞) like

ψ0 ∼ cos(|x|k + δ0)

ψ1 ∼ sgn(x)i sin(|x|k + δ1)

where

sgn(x) =


+1 if x > 1

0 if x = 0

−1 if x < 1.

The phases δ0 and δ1 are the scattering phases of the symmetric and antisymmetric wave functions,

respectively.

Write down the ansatz for the symmetric wavefunction for the potential V (x) and formulate the

continuity conditions, which determine the scattering phase δ0(E) for the energy E. Compare

the equations with the expressions from task a).
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f)? We define the scattering cross section σ = σ0 + σ1, where the partial scattering cross sections σi
describe scattering with the corresponding symmetry of the wavefunction. The optical theorem

expresses the partial scattering cross sections in terms of the corresponding scattering phases

σi =
1

(tan δi)2 + 1
. (7)

Prove that the partial scattering cross section exhibits poles at the complex energies Ems and

E?
ms.

g)? Show that in the vicinity of the poles σ0(E) takes the following form

σ0(E) ∼
1

(E − E0 +∆)2 + Γ2/4
. (8)

This shows that metastable states result in resonances in the partial scattering cross sections.

Problem 2: Creation and annihilation operators (Written, 3 points)

Learning objective

The harmonic oscillator problem is a corner stone in physics. In a previous problem set you saw how we

can solve the 1-dimensional harmonic oscillator using the path integral formalism. Here we introduce

another approach to solve the harmonic oscillator problem using ladder operators. You can realize that

calculations become easier. Instead of solving differential equations, we have a linear algebra problem

where we need to find the eigensystem of our Hamiltonian.

Given the 2-dimensional harmonic oscillator Hamiltonian:

H = h̄ω+(a
†
+a+ +

1

2
) + h̄ω−(a

†
−a− +

1

2
); (9)

where the creation and annihilation operators a†±, a± satisfy the following commutation rules:[
a±, a

†
±

]
= 1; [a±, a±] =

[
a†±, a

†
±

]
= 0; (10)

[
a±, a

†
∓

]
= [a±, a∓] =

[
a†±, a

†
∓

]
= 0; (11)

a) Show that the Hamiltonian of the system is diagonal with respect to the eigenstates of the

number operators N+ = a†+a+ and N− = a†−a− and find the respective eigenenergies. Does the

measurement of the observable N = N+ +N− specify the state of the system?

b) Define the groundstate of the system |0, 0〉 through a± |0, 0〉 = 0, correctly normalized 〈0, 0|0, 0〉 =
1. The Hilbert space can be constructed by the application of creation operators on |0, 0〉. Show
that the commutation relations

[N+, a+] = −a+
[
N+, a

†
+

]
= a†+ (12)

hold (same for N−). Find the normalized eigenvectors |n+, n−〉 of both number operators with

eigenvalues n+ and n−.
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c) Verify the following relations:

a†+ |n+, n−〉 =
√
n+ + 1 |n+ + 1, n−〉 (13)

a+ |n+, n−〉 =
√
n+ |n+ − 1, n−〉 (14)

Problem 3: Coherent states (Oral, 5 points)

Learning objective

The eigenstates of the harmonic oscillator Hamiltonian |n〉, are not eigenstates of the ladder operators.
The coherent state which is an eigenstate of the annihilation operator is a useful object for example in

quantum optics. In this exercise you investigate some properties of coherent states and realize their

convenience especially when describing the dynamic behavior of a quantum harmonic oscillator.

For every α ∈ C, we define the coherent state

|ψα〉 = e−|α|2/2
∑
n≥0

αn

√
n!

|n〉 (15)

being |n〉 an eigenstate of the 1-dimensional harmonic oscillator Hamiltonian.

a) Verify that the coherent state |ψα〉 is an eigenstate of the annihilation operator where α is the

eigenvalue, then show that the creation operator has no eigenstates.

b) Show that

|ψα〉 = eαa
†−α∗a |0〉 (16)

where a† and a are creation and annihilation operators, respectively.

(Tip: e−αa |0〉 = |0〉)
c) Calculate 〈x〉α = 〈ψα |x|ψα〉, 〈p〉α, ∆xα, ∆pα and show that, for all α ∈ C,

∆xα∆pα =
h̄

2
(17)

is valid, i.e., coherent states minimize the position and momentum uncertanty relation. (Tip:

a |ψα〉 = α |ψα〉)
d) Show that coherent states are not orthogonal and the relation

〈ψα|ψβ〉 = e−
1
2
(|α|2+|β|2−2α∗β) (18)

is valid.

e) Derive the time evolution of coherent state |ψα(t)〉 and of the expectation values 〈x〉t and 〈p〉t
under the Hamiltonian H = h̄ω

(
a†a+ 1

2

)
.

Page 4 of 4


