Relativitätstheorie 2

BSc Physik / MSc Physik / Lehramt Physik

Sommersemester 2024

Vorlesungsbeginn

  • Erste Vorlesung: Dienstag, 9. April 2024
  • Erste Übung: Mittwoch, 24. April 2024

Zeit & Ort

  • Dienstag, 15:45 - 17:15, V57.04, Pfaffenwaldring 57

Allgemeine Informationen

  • Vorlesungen und Übungen sowie die Prüfung werden auf Deutsch abgehalten.
  • Die Übungsblätter sind in zwei verschiedene Aufgabentypen aufgeteilt: "Schriftlich" bedeutet, dass diese Aufgaben von den Studenten bearbeitet und von den Tutoren korrigiert werden. Die Aufgaben markiert mit "Mündlich" sollen für die Übungsstunde vorbereitet werden. Sie werden in den Tutorien von den Studenten präsentiert.
  • Zum Erlangen des Übungsscheines müssen 66% der Punkte für die schriftlichen Übungen gesammelt und 66% der Übungsaufgaben votiert werden. Zudem muss jeder einmal an der Tafel eine Aufgabe präsentiert haben.
  • Die Übungen beginnen in der dritten Vorlesungswoche.
  • Die Anmeldung zu den Übungsgruppen (nur aus dem Uni-Netz erreichbar) wird am Dienstag den 09.04.2024 um 18:00 Uhr freigeschaltet. Zur Anmeldung wird ein Passwort ("Lecture Key") benötigt, das in der ersten Vorlesung am 09.04.2024 bekannt gegeben wird.
  • Falls Sie bei der Anmeldung ein Passwort vergeben, können Sie hier (nur aus dem Uni-Netz erreichbar) Ihren aktuellen Punktestand abfragen.
  • Beachten Sie, dass das Anmelden und Einloggen nur innerhalb des Uni-Netzes (z.B. CIP-Pool, eduroam oder per VPN) möglich ist..

Aufzeichnungen der Vorlesungen können über ILIAS abgerufen werden.

Diese Vorlesung eignet sich für folgende Studiengänge:
Studiengang Modul Beschreibung ECTS Vorlesungen
M.Ed. Physik 28650 Wahlmodul 9 Teil 1: SRT + Teil 2: ART
B.Sc. Physik 28650 Physikalisches Wahlmodul 9 Teil 1: SRT + Teil 2: ART
M.Sc. Physik 28650 Wahlpflicht Ergänzung 9 Teil 1: SRT + Teil 2: ART
M.Sc. Physik 75770 Wahlpflicht Schwerpunkt 12 Teil 1: SRT + Teil 2: ART +
Vertiefung: Quantengravitation
  • Vollständige Liste aller zugeordneten Studiengänge zum Modul 28650 (9 ECTS)
  • Vollständige Liste aller zugeordneten Studiengänge zum Modul 75770 (12 ECTS)

Prüfung

Diese Vorlesung ist der erste Teil des zweisemestrigen Moduls "Relativitätstheorie". Am Ende des Sommersemesters 2024 findet eine mündliche Prüfung zu den Themen beider Semester statt. Entsprechend sind die Übungsscheine beider Semester Vorraussetzung zur Prüfungszulassung.

Die mündlichen Prüfungen finden an folgenden Terminen statt:
- Termin 1: Mittwoch, 21.08.24
- Termin 2: Mittwoch, 25.09.24
Sie werden über Ihren Prüfungstermin und Zeitslot per Mail informiert.

Die abgefragen Themen orientieren sich eng an den Vorlesungsinhalten; siehe Stichpunkte in den Vorlesungslisten zur Relativitätstheorie 1 und Relativitätstheorie 2 (unten).

Skript

Das aktuelle Skript kann hier heruntergeladen werden (in Englisch).
Der Inhalt des Skriptes wird fortlaufend erweitert und parallel zu den Vorlesungen veröffentlicht.

Das Skript für kommende Vorlesungen wird (mindestens) einen Tag vor der Vorlesung veröffentlicht. Wir empfehlen Ihnen, diese Notizen auszudrucken (oder auf Ihr Tablet herunterzuladen), damit Sie sich auf die Vorlesung konzentrieren können.

Das Skript enthält Ihnen zu viele Formeln? Dann ist vielleicht diese Einführung mehr nach Ihrem Geschmack ;-) ...

Literatur, Themen und Vorraussetzungen

Siehe Skript.

Vorlesungen

Nr. Datum Themen Notizen
1 (16) 09.04.24 - Erinnerung zur SRT
- Probleme der SRT
- Die spezielle Rolle der Gravitation
PDF
2 (17) 16.04.24 - Die spezielle Rolle der Gravitation (cont.)
- Rotverschiebung und Krümmung der Raumzeit
- Das Einstein'sche Äquivalenzprinzip
PDF
3 (18) 23.04.24 - Allgemeine Kovarianz
- Hintergrundunabhängigkeit
- Das Mach'sche Prinzip
- Überblick über die ART
PDF
4 (19) 30.04.24 - Zusammenfassung Tensorkalkül
- Der affine Zusammenhang
- Absolute Ableitungen
- Torsion
PDF
5 (20) 07.05.24 - Kovariante Ableitungen
- Parallele Vektorfelder und autoparallele Kurven
- Der Krümmungstensor
- Der Levi-Civita Zusammenhang
PDF
6 (21) 14.05.24 - Der Riemannsche Krümmungstensor
- Abgeleitete Größen und Identitäten
- Geodätengleichung
- Deviationsgleichung
PDF
  21.05.24 Keine Vorlesung (Pfingstferien)  
7 (22) 28.05.24 - Geodäten auf Lorentzschen Mannigfaltigkeiten
- Eigenzeit, Gleichzeitigkeit, Eigenabstand
- Minimale Kopplung
PDF
8 (23) 04.06.24 - Klassische Mechanik in der ART
- Elektrodynamik in der ART
PDF
9 (24) 11.06.24 - Der Hilbert Energie-Impuls Tensor
- Killing-Vektorfelder
PDF
10 (25) 18.06.24 - Die Einsteinschen Feldgleichungen
- Newtonscher Grenzfall
- Die kosmologische Konstante
PDF
11 (26) 25.06.24 - Die Einstein-Hilbert Wirkung
- Energie-Impuls Tensor des Gravitationsfeldes
- Modifikationen der ART
  (MOND vs. Dunkle Materie ...)
PDF
12 (27) 02.07.24 - Birkhoff-Theorem
- Schwarzschild-Metrik
PDF
13 (28) 09.07.24 - Tests der ART im Sonnensystem:
  - Periheldrehung
  - Lichtablenkung / Gravitationslinsen
  - Rotverschiebung / Zeitdilatation
PDF
14 (29) 16.07.24 - Schwarze Löcher PDF
15 (30) Bonus - Gravitationswellen
  (Ergänzung zur Übung vom 17.07.24)
PDF
16 (31) 05.08.24 Vertiefungsvorlesung 1:
- Wieso Quantengraviation?
- Wie quantisiert man Feldtheorien?
- Nicht-Renormierbarkeit der ART
- Zwei Wege zur Quantengravitation
PDF
17 (32) 06.08.24 Vertiefungsvorlesung 2:
- Überblick: String Theorie
- Was macht die Metrik zur Metrik?
- Klassischer relativistischer String
- Nambu-Goto und Polyakov Wirkung
- Weyl-Symmetrie (Konforme Feldtheorien)
PDF
18 (33) 07.08.24 Vertiefungsvorlesung 3:
- Randbedingungen (Offen, Geschlossen, D-Branes)
- Flache/Konforme Eichung
- Klassische Lösungen (offen + geschlossen)
- Moden & Poisson Algebra
- Noether-Ströme und Hamiltonian
PDF
19 (34) 08.08.24 Vertiefungsvorlesung 4:
- Lichtkegel-Eichung
- Transversale Virasoro-Moden
- Witt-Algebra & Konforme Abbilungen
- Lichtkegel-Quantisierung
- Virasoro-Algebra & Anomalien
PDF
20 (35) 09.08.24 Vertiefungsvorlesung 5:
- Lorentz-Symmetrie & Kritische Dimension
- Spektrum des offenen Strings
- Spektrum des geschlossenen Strings
- Abschließende Bemerkungen
PDF

Übungsblätter

Nr. Ausgabe Abgabe Download Kommentare
1 10.04.24 24.04.24 Blatt 1 Version 1.1, various fixes (for details ask your tutor)
2 25.04.24 09.05.24 Blatt 2  
3 09.05.24 05.06.24 Blatt 3 Version 1.1: 3.3: fixed wrong Ez and some α factors
4 05.06.24 19.06.24 Blatt 4  
5 20.06.24 03.07.24 Blatt 5  
6 04.07.24 17.07.24 Blatt 6  
7 04.07.24   Blatt 7 This is a bonus sheet (if wanted, there will be an additional voluntary tutorial to discuss it)

Tutorien

Tutor Raum Tag Zeit
Johannes Mögerle V57.5.331 Mittwoch 14:00-15:30
Chris Bühler V57.6.331 Mittwoch 15:45-17:15
To the top of the page